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Abstract

This paper uses numerical limit analysis to produce stability charts for rock slopes. These charts have been produced using the most

recent version of the Hoek–Brown failure criterion. The applicability of this criterion is suited to isotropic and homogeneous intact rock,

or heavily jointed rock masses. The rigorous limit analysis results were found to bracket the true slope stability number to within 79%

or better, and the difference in safety factor between bound solutions and limit equilibrium analyses using the same Hoek–Brown failure

criterion is less than 4%. The accuracy of using equivalent Mohr–Coulomb parameters to estimate the stability number has also been

investigated. For steep slopes, it was found that using equivalent parameters produces poor estimates of safety factors and predictions of

failure surface shapes. The reason for this lies in how these equivalent parameters are estimated, which is largely to do with estimating a

suitable minor principal stress range. In order to obtain better equivalent parameter solutions, this paper proposes new equations for

estimating the minor principal stress for steep and gentle slopes, which can be used to determine equivalent Mohr–Coulomb parameters.

Crown Copyright r 2007 Published by Elsevier Ltd. All rights reserved.

Keywords: Safety factor; Limit analysis; Rock; Slope stability; Failure criterion
1. Introduction

Predicting the stability of rock slopes is a classical
problem for geotechnical engineers and also plays an
important role when designing for dams, roads, tunnels
and other engineering structures. Many researchers have
focused on assessing the stability of rock slope [1–3].
However, the problem of rock slopes still presents a
significant challenge to designers.

Stability charts for soil slopes were first produced by
Taylor [4] and they continue to be used extensively as
design tools and draw the attention of many investigators
[1,5]. Unfortunately, there are no such stability charts for
rock slopes in the literature that are based on rock mass
strength criteria. Although the stability charts proposed by
Hoek and Bray [1] for Mohr–Coulomb material can be
e front matter Crown Copyright r 2007 Published by Elsevie
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applied to rock or rockfill slopes, this requires knowledge
of the equivalent Mohr–Coulomb cohesion and friction for
the rock mass. Unfortunately, the strength of rock masses
is notoriously difficult to assess. Nonetheless, many criteria
have been proposed for estimating rock strength [6–10].
Currently, one widely accepted approach to estimating
rock mass strength is the Hoek–Brown failure criterion
[6,11]. However, since most geotechnical software uses the
Mohr–Coulomb failure criterion, stability chart solutions
based on the Hoek–Brown yield criterion do not appear in
the literature.
Generally speaking, rock masses are inhomogeneous,

discontinuous media composed of rock material and
naturally occurring discontinuities such as joints, fractures
and bedding planes. These features make any analysis very
difficult using simple theoretical solutions, like the limit
equilibrium method. Moreover, without including special
interface or joint elements, the displacement finite element
method is not suitable for analysing rock masses with
fractures and discontinuities. Fortunately, the upper and
lower bound formulations developed by Lyamin and Sloan
r Ltd. All rights reserved.
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[12,13] and Krabbenhoft et al. [14] are ideally suited to
modelling jointed or fissured materials because discontinu-
ities exist inherently throughout the mesh. This feature was
recently exploited by Sutcliffe et al. [15] and Merifield
et al. [16] for predicting the bearing capacity of jointed rocks.

The purpose of this paper is to take advantage of the
limit theorems ability to bracket the actual stability
number of rock slopes. Both the upper and lower bounds
are employed to provide this set of stability charts. These
solutions are obtained from numerical techniques devel-
oped by Lyamin and Sloan [12,13] and Krabbenhoft et al.
[14] where the well-known Hoek–Brown yield criterion has
been incorporated into limit analysis as presented by
Merifield et al. [16].

As a means of comparison, the limit equilibrium method
will then be used in conjunction with equivalent Mohr–
Coulomb parameters for the rock and compared with the
solutions obtained from the numerical limit analysis
approaches. This will allow the validity of using equivalent
Mohr–Coulomb parameters for rock slope calculations to
be investigated.

2. Previous studies

The stability of rock slopes has attracted the attention
of researchers for decades. In order to deal with the
complications of rock slope failure mechanisms, Goodman
and Kieffer [17] and Jaeger [18] outlined several simple
methods and their limitations for estimating strength and
stability of rock slopes. Due to the advancement of various
computational techniques, our ability to more accurately
evaluate rock slope stability and interpret the likely failure
mechanisms has improved [19]. Buhan et al. [20] found that
the final results of a stability analysis may be influenced by
scale effect of rock masses. Sonmez et al. [21] utilised back
analysis of slope failures to obtain rock slope strength
parameters. In their study, the applicability of rock mass
classification, and a practical procedure of estimating the
mobilised shear strength based on the Hoek–Brown yield
criterion were explained. Previous investigations [22–25] of
progressive failures and/or safety factor assessment of rock
slopes have used a range of numerical methods. These
include the continuum methods (finite element method and
the finite difference method), the discontinuum methods
(distinct element and discontinuous deformation analysis),
and finite-/discrete-element codes. In addition, the prob-
abilistic analytical method is employed in [26,27] to find
the rock slope potential failure key-group and estimate the
probability of failure. It should be acknowledged that the
slope stability probability classification proposed by Hack
et al. [27] does not require cohesion and friction as input.
Yang et al. [28–30] adopted tangential strength parameters
(c and f) from the Hoek–Brown failure criterion in an
upper bound analysis to obtain the optimised height of a
slope. As far as the authors are aware, these studies [28–30]
represent the only attempt at providing slope stability
factors for estimating rock slope stability.
Currently, practising engineers typically use a number of
stability charts when attempting to predict the stability of
rock slopes: (1) Hoek–Bray [1] charts can be used for rock
and rockfill slopes; (2) Zanbak [31] proposed a set of
stability charts for rock slopes susceptible to toppling;
(3) stability charts were presented by Siad [32] based on the
upper bound approach that can be used for rock slopes
with earthquake effects. However, these three sets of design
charts require conventional Mohr–Coulomb soil para-
meters, cohesion (c) and friction angle (f), as input. From
a review of the literature, the authors are not aware of any
slope stability chart solutions based on the native form of
the Hoek–Brown failure criterion that requires Hoek–
Brown material parameters as input. This paper is
concerned with providing a set of stability charts for rock
slopes based on the Hoek–Brown failure criterion that can
be used by practising engineers to rapidly assess the
preliminary stability of rock slopes.
3. The generalised Hoek–Brown failure criterion

3.1. Applicability

Practitioners are often required to predict the strength of
large-scale rock masses for design. Fortunately, Hoek and
Brown [6] proposed an empirical failure criterion which
developed through curve fitting of triaxial test data suited
for intact rock and jointed rock masses. The criterion is
based on a classification system called the Geological
Strength Index (GSI). The Hoek–Brown criterion is one of
the few non-linear criteria widely accepted and used by
engineers to estimate the strength of a rock mass. There-
fore, it is appropriate to use this criterion when assessing
the stability of istopic rock slopes in this study.
The GSI classification system is based upon the

assumption that the rock mass contains sufficient number
of ‘‘randomly’’ oriented discontinuities such that it behaves
as an isotropic mass. In other words, the behaviour of the
rock mass is independent of the direction of the applied
loads. Therefore, it is clear that the GSI system should not
be applied to those rock masses in which there is a clearly
defined dominant structural orientation that will lead to
highly anisotropic mechanical behaviour. In addition, it is
also inappropriate to assign GSI values to excavated faces
in strong hard rock with a few discontinuities spaced at
distances of similar magnitude to the dimensions of slope
under consideration. In such cases the stability of the slope
will be controlled by the three-dimensional geometry of the
intersecting discontinuities and the free faces created by the
excavation.
In line with the above discussion, it is important to

realise the stability charts presented in this paper will be
subject to the same limitations that underpin the Hoek–
Brown yield criterion itself. An excellent overview of the
applicability and limitations of the GSI system can be
found in [33].
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An explanation for the applicability of Hoek–Brown
criterion when applied to rock slopes is displayed in Fig. 1.
After Hoek [34], for the same rock properties throughout the
slope, rock masses can be classified into three structural
groups, namely Group I, Group II and Group III. Fig. 1
shows the transition from an isotropic intact rock (Group I),
through a highly anisotropic rock mass (Group II), to a
heavily jointed rock mass (Group III). In this paper the rock
slope has been assumed to be either (1) intact or; (2) heavily
jointed so that, on the scale of the problem, it can be
regarded as an isotropic assembly of interlocking particles. In
the case of intact rock (Group I), it should be noted that the
failure mechanism of intact rock may be brittle rather than
plastic, so the theories of plasticity may not be appropriate.

3.2. Numerical implementation

The upper-bound and lower-bound methods developed
in [12–14] can deal with a wide range of yield criteria;
however, on deviatoric planes the surfaces of those criteria
must be convex and smooth. The Hoek–Brown yield
surface has apex and corner singularities in stress space,
and therefore numerical smoothing is required to avoid
singularities. Details of the implementation of the Hoek–
Brown criterion into the numerical limit analysis formula-
tions can be found in [16] and will not be repeated here.
In this study, the latest version of Hoek–Brown failure
criterion [11] is employed.

s01 ¼ s03 þ sci mb
s03
sci
þ s

� �a

, (1)

where

mb ¼ mi exp
GSI � 100

28� 14D

� �
, (2)
GROUP II
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Fig. 1. Applicability of the Hoek–Brown fail
s ¼ exp
GSI � 100

9� 3D

� �
, (3)

a ¼
1

2
þ

1

6
e�GSI=15 � e�20=3
� �

. (4)

The GSI was introduced because Bieniawski’s rock mass
rating (RMR) system [35] and the Q-system [36] were
deemed to be unsuitable for poor rock masses. The GSI

ranges from about 10, for extremely poor rock masses, to
100 for intact rock. The parameter D is a factor that
depends on the degree of disturbance. The suggested value
of disturbance factor is D ¼ 0 for undisturbed in situ rock
masses and D ¼ 1 for disturbed rock mass properties. The
magnitude of the disturbance factor is affected by blast
damage and stress relief due to overburden removal. For
the analyses presented here, a value of D ¼ 0 has been
adopted.
The uniaxial compressive strength is obtained by setting

s3 ¼ 0 in Eq. (1), giving

sc ¼ scisa, (5)

and the tensile strength is

st ¼ �
ssci
mb

. (6)

3.3. Equivalent Mohr–Coulomb parameters

Since most geotechnical engineering software is still
written in terms of the Mohr–Coulomb failure criterion, it
is necessary for practising engineers to determine equiva-
lent friction angles and cohesive strengths for each rock
mass and stress range. In the context of this paper, the
solutions obtained by using equivalent Mohr–Coulomb
GROUP III

JOINTED
ROCK
MASS

SEVERAL
DISCONTINUITIESITIES

Jointed Rock
σci, GSI, mi, γ

ure criterion for slope stability problems.
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parameters can be compared directly with the solutions
from using the native Hoek–Brown failure criterion.

Fig. 2 is an illustration of the Hoek–Brown criterion and
equivalent Mohr–Coulomb envelope. Because the equiva-
lent Mohr–Coulomb envelope is a straight line, it cannot fit
the Hoek–Brown curve completely. If we divide Fig. 2 into
three zones, namely Region 1, Region 2, and Region 3, it
can be seen that when rock stress conditions fall in Regions
1 and 3, using equivalent Mohr–Coulomb parameters may
overestimate the ultimate shear strength when compared
with the Hoek–Brown curve. Regarding the fitting process,
more details can be found in Hoek et al. [11] where the
process involves balancing the areas above and below the
Mohr–Coulomb plot over a range of minor principal stress
values. This results in the following equations for friction
angle and cohesive strength

c0 ¼
sci ð1þ 2aÞsþ ð1� aÞmbs03n
� �

ðsþmbs03nÞ
a�1

ð1þ aÞð2þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ambðsþmbs03nÞ

a�1	 
�
ð1þ aÞð2þ aÞ

q ,

(7)

f0 ¼ sin�1
6ambðsþmbs03nÞ

a�1

2ð1þ aÞð2þ aÞ þ 6ambðsþmbs03nÞ
a�1

" #
(8)

where s3n ¼ s03max=sci.
It should be noted that the value of s03max has to be

determined for each particular problem. For slope stability
problems, Hoek et al. [11] suggests s03max can be estimated
by the following equation:

s03max

s0cm
¼ 0:72

s0cm
gH

� �0:91
, (9)

in which H is the height of the slope and g is the material
unit weight. For the stress range, stos03osci=4, the
compressive strength of the rock mass s0cm can be
determined as

s0cm ¼ sci
ðmb þ 4s� aðmb � 8sÞÞðmb=4þ sÞa�1

2ð1þ aÞð2þ aÞ
. (10)
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Fig. 2. Hoek–Brown and equivalent Mohr–Coulomb criteria.
4. Problem definition

A plane strain illustration of the slope-stability problem
is shown in Fig. 3, where the jointed rock mass has an
intact uniaxial compressive strength sci, GSI, intact rock
yield parameter mi, and unit weight g. The rock weight g
can be estimated from core samples and sci and mi can be
obtained from either triaxial test results or from the tables
proposed in [37]. Several approaches can be used to
evaluate GSI as outlined in [37], which include using table
solutions and estimating by using RMR [35]. Excavated
slope and tunnel faces are probably the most reliable
source of information for GSI estimates. Hoek and Brown
[38] also pointed out that GSI can be adjusted to a smaller
magnitude in order to incorporate the effects of surface
weathering. Greater detail on how to best estimate the
Hoek–Brown material parameters can be found in Hoek
and Brown [38], Hoek [37] and Wyllie and Mah [3].
In this study, all the quantities are assumed constant

throughout the slope. In the limit analyses, for given slope
geometry (H,b) and rock mass (sci,GSI,mi), the optimised
solutions of the upper-bound and lower-bound programs
can be carried out with respect to the unit weight, g. In this
study, slope inclinations of b ¼ 151, 301, 451, 601, and 751
are analysed. The effect of depth factor (d/H) was found to
be insignificant. With the exception of the case where
b ¼ 151, all analyses indicated the primary failure mode
was one where the slip line passed through the toe of the
slope (toe failure). The dimensionless stability number is
defined as

N ¼
sci
gHF

, (11)

where F is the safety factor of the slope.

5. Results and discussion of limit analyses

5.1. Limit analysis solutions

Figs. 4–8 present stability charts from the numerical
upper- and lower-bound formulations for angles of
b=151–751 for a range of GSI and mi. The stability
number N was defined in Eq. (11). Referring to Fig. 4, it is
apparent that the upper- and lower-bound results bracket a
narrow range of stability numbers N for GSI ¼ 10, so an
Toe

Rigid Base

d

Jointed Rock

σci, GSI, mi , γ

H
β

Fig. 3. Problem definition.
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average value from the bound solutions could be adopted
for simplicity. In fact, it was found that, for all the analyses
performed, the range between upper- and lower-bound
stability numbers was always less than 75%. The only
exception to this observation occurs for the cases of
b ¼ 451 and low GSI values, where the range is around
79%. Therefore, average values of the stability number N

have been adopted and presented unless stated otherwise.
The parameter N can be seen to decrease as the value of
GSI or mi increases.

Figs. 9 and 10 show an alternative form of stability
charts as a function of the slope angle, b. The users only
need to estimate GSI and mi for the rock mass, and then
the stability number can be estimated for a given slope
angle. For the same rock slope material, the differences in
stability number between various slope angles can provide
a ratio of safety factor. For example, it can be found that
decreasing slope angles from b=751 to 601 for GSI=80
can increase the factor of safety by more than 50%.

Referring to the above results, for any given rock mass
(sci, GSI, mi) and unit weight of the material g, the
obtained stability number can be used to determine the
ultimate height of cut slopes. In addition, the charts
indicate that the stability number N increases with
increasing slope angle for a given GSI and mi.

Fig. 11 displays several of the observed upper-bound
plastic zones for different slope angles in which H ¼ 1.
The depth of failure surface increases with the reduction in
the slope angle. But this variation cannot be found when
the slope angle b4451. For a given GSI, it was found that
the depth of plastic zone is almost unchanged with
increasing mi.

5.2. Application example

The stability charts illustrated in Figs. 4–8 provide an
efficient method to determine the factor of safety F for a
rock slope. The following example is of a slope constructed
in a very poor quality rock mass. It has the following
parameters: the slope angle b=601, the height of the
slope H=25m, the intact uniaxial compressive strength
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sci=20MPa, GSI=30, intact rock yield parameter mi=8,
and unit weight of rock mass g=23kN/m3. With this
information, the safety factor (F) of this rock slope can be
obtained as follows. First, from the values of sci, g and H,
we can calculate a dimensionless parameter sci/gH=20000/
(23� 25)=34.8. In Fig. 7, N ¼ sci/gHFE4. The factor of
safety can then be calculated as F ¼ 34.8/4 ¼ 8.7.

6. Results and discussion of limit equilibrium analyses

In general, rock slope stability is more often analysed
using the limit equilibrium method and equivalent Mohr–
Coulomb parameters as determined by Eqs. (7) and (8).
With this being the case, an obvious question is how do the
limit equilibrium results using equivalent Mohr–Coulomb
parameters compare with the limit analysis results using
the Hoek–Brown criterion. In order to make this compar-
ison, the commercial limit equilibrium software SLIDE [39]
and Bishop’s simplified method [40] have been used. The
software SLIDE can perform a slope analysis using the
Mohr–Coulomb yield or the generalised Hoek–Brown
criterion. When the Mohr–Coulomb criterion is used, the
cohesion (c) and friction angle (f) are constant along any
given slip surface and are independent of the normal stress
as expected. However, when the Hoek–Brown criterion is
selected, the software will calculate a set of instantaneous
equivalent Mohr–Coulomb parameters when analysing the
slope based on the normal stress at the base of each
individual slice. More details on how the parameters are
actually calculated can be found in [37]. Therefore, the
cohesion (c) and the friction angle (f) will vary along any
given slip surface. By calculating equivalent Mohr–
Coulomb parameters in this way, a more accurate
representation of the curved nature of the Hoek–Brown
criterion in t–sn space is obtained. Referring to Figs. 4–8,
the triangular points shown represent the stability numbers
obtained from the limit equilibrium method based on the
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Hoek–Brown strength parameters. It can be found that
these points are remarkably close to the average lines of the
limit analysis solutions and most of them locate between
the upper and lower bound solutions.

For the given materials and geometrical properties of the
slope, the finite element lower bound analysis will provide
the optimum unit weight (g) such that collapse has just
occurred (i.e., F=1). A critical non-dimensional parameter
(sci/gH)crit can then be defined for the subsequent SLIDE
analyses. In Table 1, the safety factor (F1) and (F2) are
obtained using the Hoek–Brown criterion and the Mohr–
Coulomb criterion in SLIDE, respectively. Both these
analyses are based on equivalent Mohr–Coulomb para-
meters with the only difference being how these parameters
are calculated (as discussed above).

The comparisons of the safety factors F, F1 and F2 are
shown in Table 1 where the largest difference between F

and F1 and F and F2 are about 4 and 64%, respectively.
This shows that the results of SLIDE analyses using the
Hoek–Brown model compare well with the results of the
Table 1

Comparisons of safety factors between the Hoek–Brown strength parameters

Limit analysis-lower

bound

SLIDE-limit equilibrium us

Nonlinear

Hoek–Brown

Nonlinear

Hoek–Brown

E

L

M

b GSI mi (sci/
gH)crit

F F1 %Diff F

75 100 5 0.360 1 0.963 �3.7% 1

75 100 15 0.278 1 0.999 �0.1% 1

75 100 25 0.228 1 1.002 0.2% 1

75 100 35 0.194 1 1.004 0.4% 1

75 70 5 1.703 1 0.988 �1.2% 1

75 70 15 1.169 1 1.002 0.2% 1

75 70 25 0.890 1 1.005 0.5% 1

75 70 35 0.717 1 1.016 1.6% 1

75 50 5 4.980 1 0.997 �0.3% 1

75 50 15 2.988 1 1.004 0.4% 1

75 50 25 2.156 1 1.018 1.8% 1

75 50 35 1.668 1 1.024 2.4% 1

75 30 5 15.011 1 1.001 0.1% 1

75 30 15 8.576 1 1.016 1.6% 1

75 30 25 5.824 1 1.025 2.5% 1

75 30 35 4.327 1 1.033 3.3% 1

75 10 5 93.721 1 1.004 0.4% 1

75 10 15 53.362 1 1.023 2.3% 1

75 10 25 35.186 1 1.035 3.5% 1

75 10 35 24.994 1 1.046 4.6% 1

60 100 5 0.232 1 1.001 0.1% 1

60 100 15 0.130 1 1.004 0.4% 1

60 100 25 0.088 1 1.004 0.4% 1

60 100 35 0.066 1 1.004 0.4% 1

60 70 5 0.946 1 1.013 1.3% 1

60 70 15 0.435 1 1.004 0.4% 1

60 70 25 0.276 1 1.004 0.4% 1

60 70 35 0.200 1 1.005 0.5% 1

60 50 5 2.337 1 1.005 0.5% 1

60 50 15 0.953 1 1.004 0.4% 1
lower-bound limit analyses. In contrast the results of
SLIDE analyses using the Mohr–Coulomb model do not
compare favourably with the lower-bound results. From
Table 1, it can be found that using the Mohr–Coulomb
model may lead to significant overestimations of safety
factors, particularly for steep slopes. The average difference
between F and F2 for b ¼ 601 and 751 was found to be
16.8% and 34.3%, respectively. For all cases, the average
overestimation is 12.8%. It should be stressed that, a high
estimation of safety factor will induce a non-conservative
design. It was found that using the Hoek–Brown model in
SLIDE will produce a failure mechanism in good agree-
ment with the upper-bound mechanism. The same could
not be said when using the Mohr–Coulomb model. For
b ¼ 301, both of the above models achieve similar failure
surfaces, which agree well with the upper-bound plastic
zone. In almost all cases, a toe-failure mode was observed,
the only exception being the case of b ¼ 151 (base failure).
In order to determine the source of overestimations in

factors of safety (F2) for steep slopes, the stress conditions
and the equivalent Mohr–Coulomb parameters

ing equivalent Mohr–Coulomb parameters

qs. (7), (8) and (9)

inear

ohr–Coulomb

Eqs. (7), (8) and (12)

Linear

Mohr–Coulomb

Eqs. (7), (8) and (13)

Linear

Mohr–Coulomb

2 %Diff F3 %Diff F4 %Diff

.008 1% 1.028 3% – –

.164 16% 1.042 4% – –

.218 22% 1.079 8% – –

.286 29% 1.112 11% – –

.081 8% 1.025 2% – –

.287 29% 1.081 8% – –

.35 35% 1.124 12% – –

.394 39% 1.156 16% – –

.154 15% 1.036 4% – –

.336 34% 1.119 12% – –

.425 43% 1.148 15% – –

.45 45% 1.174 17% – –

.248 25% 1.047 5% – –

.459 46% 1.136 14% – –

.51 51% 1.173 17% – –

.516 52% 1.194 19% – –

.224 22% 1.018 2% – –

.504 50% 1.126 13% – –

.605 61% 1.185 19% – –

.642 64% 1.21 21% – –

.033 3% 1.043 4% – –

.114 11% 1.026 3% – –

.146 15% 1.035 3% – –

.141 14% 1.04 4% – –

.059 6% 1.024 2% – –

.143 14% 1.033 3% – –

.161 16% 1.043 4% – –

.183 18% 1.047 5% – –

.124 12% 1.026 3% – –

.171 17% 1.036 4% – –



ARTICLE IN PRESS

Table 1 (continued )

Limit analysis-lower

bound

SLIDE-limit equilibrium using equivalent Mohr–Coulomb parameters

Nonlinear

Hoek–Brown

Nonlinear

Hoek–Brown

Eqs. (7), (8) and (9)

Linear

Mohr–Coulomb

Eqs. (7), (8) and (12)

Linear

Mohr–Coulomb

Eqs. (7), (8) and (13)

Linear

Mohr–Coulomb

b GSI mi (sci/
gH)crit

F F1 %Diff F2 %Diff F3 %Diff F4 %Diff

60 50 25 0.584 1 1.008 0.8% 1.176 18% 1.046 5% – –

60 50 35 0.419 1 1.009 0.9% 1.172 17% 1.049 5% – –

60 30 5 6.439 1 1.009 0.9% 1.15 15% 1.023 2% – –

60 30 15 2.317 1 1.009 0.9% 1.197 20% 1.044 4% – –

60 30 25 1.356 1 1.01 1.0% 1.201 20% 1.049 5% – –

60 30 35 0.945 1 1.011 1.1% 1.23 23% 1.051 5% – –

60 10 5 38.926 1 1.004 0.4% 1.183 18% 1.013 1% – –

60 10 15 11.734 1 1.013 1.3% 1.257 26% 1.048 5% – –

60 10 25 5.928 1 1.017 1.7% 1.261 26% 1.054 5% – –

60 10 35 3.729 1 1.018 1.8% 1.258 26% 1.059 6% – –

45 100 5 0.135 1 1 0.0% 1.008 1% 1.022 2% 1.027 3%

45 100 15 0.058 1 1.005 0.5% 1.041 4% 1.003 0% 1.086 9%

45 100 25 0.036 1 1.012 1.2% 1.047 5% 1.003 0% 1.11 11%

45 100 35 0.026 1 1.015 1.5% 1.06 6% 1.005 0% 1.126 13%

45 70 5 0.469 1 1.001 0.1% 1.038 4% 1.001 0% 1.055 5%

45 70 15 0.176 1 1.012 1.2% 1.08 8% 1.002 0% 1.098 10%

45 70 25 0.108 1 1.017 1.7% 1.06 6% 1.007 1% 1.113 11%

45 70 35 0.077 1 1.019 1.9% 1.061 6% 1.009 1% 1.123 12%

45 50 5 1.046 1 1.004 0.4% 1.045 4% 1.001 0% 1.063 6%

45 50 15 0.369 1 1.009 0.9% 1.065 6% 1.004 0% 1.098 10%

45 50 25 0.222 1 1.02 2.0% 1.066 7% 1.01 1% 1.11 11%

45 50 35 0.158 1 1.021 2.1% 1.044 4% 1.011 1% 1.118 12%

45 30 5 2.593 1 1.011 1.1% 1.066 7% 0.999 0% 1.06 6%

45 30 15 0.829 1 1.018 1.8% 1.07 7% 1.007 1% 1.094 9%

45 30 25 0.480 1 1.021 2.1% 1.076 8% 1.01 1% 1.11 11%

45 30 35 0.334 1 1.024 2.4% 1.085 9% 1.011 1% 1.118 12%

45 10 5 13.585 1 1.014 1.4% 1.087 9% 1 0% 1.039 4%

45 10 15 3.155 1 1.023 2.3% 1.106 11% 1.005 0% 1.08 8%

45 10 25 1.552 1 1.023 2.3% 1.107 11% 1.009 1% 1.103 10%

45 10 35 0.969 1 1.026 2.6% 1.079 8% 1.01 1% 1.115 12%

30 100 5 0.070 1 1.014 1.4% 0.988 �1% – – 1 0%

30 100 15 0.026 1 1.02 2.0% 0.999 0% – – 1.024 2%

30 100 25 0.016 1 1.023 2.3% 1.003 0% – – 1.036 4%

30 100 35 0.011 1 1.024 2.4% 1.007 1% – – 1.044 4%

30 70 5 0.218 1 1.018 1.8% 0.985 �2% – – 1.011 1%

30 70 15 0.075 1 1.023 2.3% 0.996 0% – – 1.028 3%

30 70 25 0.045 1 1.024 2.4% 1.004 0% – – 1.035 3%

30 70 35 0.032 1 1.025 2.5% 1.01 1% – – 1.04 4%

30 50 5 0.461 1 1.02 2.0% 0.993 �1% – – 1.014 1%

30 50 15 0.153 1 1.024 2.4% 1.003 0% – – 1.026 3%

30 50 25 0.091 1 1.025 2.5% 1.024 2% – – 1.032 3%

30 50 35 0.065 1 1.026 2.6% 1.008 1% – – 1.036 4%

30 30 5 1.057 1 1.022 2.2% 1.001 0% – – 1.012 1%

30 30 15 0.323 1 1.026 2.6% 1.003 0% – – 1.026 3%

30 30 25 0.185 1 1.026 2.6% 1.005 0% – – 1.031 3%

30 30 35 0.129 1 1.027 2.7% 1.004 0% – – 1.035 3%

30 10 5 4.363 1 1.023 2.3% 1.002 0% – – 1.006 1%

30 10 15 0.943 1 1.025 2.5% 1.007 1% – – 1.023 2%

30 10 25 0.460 1 1.026 2.6% 0.996 0% – – 1.033 3%

30 10 35 0.286 1 1.026 2.6% 1.004 0% – – 1.04 4%

10 100 5 0.026 1 1.009 0.9% 1.067 7% – – 1 0%

10 100 15 0.009 1 1.011 1.1% 1.079 8% – – 0.987 �1%

10 100 25 0.005 1 1.011 1.1% 1.091 9% – – 0.985 �2%

10 100 35 0.004 1 1.012 1.2% 1.094 9% – – 0.986 �1%

10 70 5 0.078 1 1.01 1.0% 1.069 7% – – 0.994 �1%

10 70 15 0.026 1 1.01 1.0% 1.087 9% – – 0.987 �1%
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Table 1 (continued )

Limit analysis-lower

bound

SLIDE-limit equilibrium using equivalent Mohr–Coulomb parameters

Nonlinear

Hoek–Brown

Nonlinear

Hoek–Brown

Eqs. (7), (8) and (9)

Linear

Mohr–Coulomb

Eqs. (7), (8) and (12)

Linear

Mohr–Coulomb

Eqs. (7), (8) and (13)

Linear

Mohr–Coulomb

b GSI mi (sci/
gH)crit

F F1 %Diff F2 %Diff F3 %Diff F4 %Diff

10 70 25 0.015 1 1.011 1.1% 1.091 9% – – 0.985 �2%

10 70 35 0.011 1 1.011 1.1% 1.094 9% – – 0.985 �2%

10 50 5 0.158 1 1.01 1.0% 1.067 7% – – 0.996 0%

10 50 15 0.052 1 1.01 1.0% 1.055 5% – – 0.989 �1%

10 50 25 0.031 1 1.011 1.1% 1.081 8% – – 0.986 �1%

10 50 35 0.022 1 1.011 1.1% 1.084 8% – – 0.985 �2%

10 30 5 0.334 1 1.01 1.0% 1.05 5% – – 0.997 0%

10 30 15 0.101 1 1.011 1.1% 1.068 7% – – 0.99 �1%

10 30 25 0.058 1 1.011 1.1% 1.072 7% – – 0.988 �1%

10 30 35 0.040 1 1.011 1.1% 1.075 8% – – 0.986 �1%

10 10 5 0.994 1 1.012 1.2% 1.036 4% – – 0.994 �1%

10 10 15 0.211 1 1.013 1.3% 1.039 4% – – 0.985 �2%

10 10 25 0.103 1 1.013 1.3% 1.041 4% – – 0.985 �2%

10 10 35 0.064 1 1.013 1.3% 1.032 3% – – 0.986 �1%

0.01 0.1 1
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Fig. 12. Relationship for the calculation of s03max between equivalent

Mohr–Coulomb and Hoek–Brown parameters for steep slopes (bX451).
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on each slice from the SLIDE limit equilibrium analyses
were observed more closely. It was found that, for steep
slopes, the stress conditions of the slices along the failure
plane tend to be located in Region 1 (Fig. 2) where the
shape of the Hoek–Brown and Mohr–Coulomb
strength criterions differs the greatest. In this region, at
the same normal stress, the ultimate shear strength using
the Hoek–Brown criterion is smaller than that of the
Mohr–Coulomb criterion. Therefore, it is reasonable
to conclude that using the equivalent Mohr–Coulomb
parameters will provide a higher estimate of the safety
factor.

From the results of this study, it appears that the
equivalent parameters (c and f) obtained from Eqs. (7–10)
will lead to an unconservative factor of safety estimate,
particularly for steep slopes where bX451. In order to
improve the estimate of F2, it becomes apparent a better
estimate of s03max, and therefore a different form for Eq. (9),
is required.

To determine a more appropriate value of s03max to be
used in Eqs. (7) and (8), a similar study as performed in [11]
is conducted. In these studies, Bishop’s simplified method
and SLIDE is used to analyse the cases in Table 1. For a
factor of safety of 1, the relationship between s0cm=gH and
s03max=s

0
cm is illustrated in Figs. 12 and 13. The authors

have tried to fit only one equation incorporating all data to
replace Eq. (9), but this did not prove possible. Instead
separate equations are presented for what is defined as
steep slopes bX451 and gentle slopes bo451 as Eqs. (12)
and (13), respectively:

s03max

s0cm
¼ 0:2

s0cm
gH

� �1:07
ðsteep slope bX45�Þ; (12)
s03max

s0cm
¼ 0:41

s0cm
gH

� �1:23
ðgentle slope bo45�Þ: (13)

It can be seen in Figs. 12 and 13 the newly fitted Eq. (12)
for steep slopes plots below the original Equation (9) and
the newly proposed Eq. (13) for gentle slopes plots above
the original Equation (9). For this reason, it is apparent
that one curve fit is not possible for all slope angles.
In Table 1, the safety factors F3 and F4 are obtained

from SLIDE using Mohr–Coulomb parameters which are
calculated by estimating s03max from Equations. (12) and
(13). Comparing F3 and F4 with F2, shows that for steep
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Fig. 14. Comparison between upper-bound plastic zones and failure

surfaces from different strength parameters (GSI ¼ 70 and mi ¼ 35).
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slope, the safety factors estimates are much improved.
A summary of the results in Table 1 shows that, using
newly proposed equations to calculate the equivalent
Mohr–Coulomb parameters, the largest difference of safety
factor has decreased from 64% to 21% and the average
difference has reduced from 12.8% to 3.4%. Thus, it can be
concluded that using the modified Eqs. (12) and (13) will
provide better results of safety factors which are, on
average, only 3.4% higher than the lower-bound results.
The newly proposed Eqs. (12) and (13) are both applicable
in estimating s03max for b ¼ 451 cases. The results show that
the difference in safety factor between these two equations
is less than 8%. This would be acceptable for preliminary
assessment of rock slope stability.

Fig. 14 displays the upper-bound plastic zones compared
with failure surfaces obtained using SLIDE and different
strength parameters from Eqs. (12) and (13). F1, F2, and
F3 denote the safety factors obtained from using the
Hoek–Brown (sci, GSI, mi, D), the original equivalent
Mohr–Coulomb (proposed by Hoek), and the new
equivalent Mohr–Coulomb (proposed in this paper)
strength parameters, respectively. It is shown that using
the original estimated Mohr–Coulomb parameters in
analyses gives poor assessment of the stability and
predictions of failure surfaces for steep slopes. On the
other hand, by using the newly proposed equivalent
Mohr–Coulomb parameters the predicted failure mechan-
ism compares more favourably with the upper-bound
mechanism and the factor of safety is much improved.

7. Conclusions

Stability charts based on the Hoek–Brown failure
criterion are presented using formulations of the upper-
and lower-bound limit theorems. These chart solutions
can be used for estimating rock slope stability for
preliminary design. It is important that users understand
the assumptions and limitations before using these new
rock slope stability charts. In particular, it should be noted
that the chart solutions proposed in this paper are
applicable to isotropic rock or rock masses only. Regard-
ing the results of this study, the following conclusions can
be made:
The upper-bound and lower-bound solutions bracket a

narrow range of stability numbers (N) within 79% or
better (i.e. 75%) for all cases. This provides confidence
that the true stability number has been bracketed
accurately.
The general mode of failure for rock slopes was observed

to be of the toe-failure type, except for the case of b ¼ 151,
where a base-failure type was observed.
The accuracy of using equivalent Mohr–Coulomb

parameters for the rock mass in a traditional limit
equilibrium method of slice analysis has been investigated.
It was found that the factor of safety can be overestimated
by up to 64% for steep slopes if existing guidelines for
equivalent parameter determination are used. In order to
improve the factor of safety estimate, 2 modified equations
for steep and gentle slopes have been proposed. These
equations are modifications of those originally proposed by
Hoek [11]. When they are used to determine equivalent
Mohr–Coulomb parameters that are subsequently used in
a method of slice analysis, the factor of safety estimate is
much improved and is at most 21% above the limit
analysis result.
It was found that a limit equilibrium method of slice

analysis can be used in conjunction with equivalent
Mohr–Coulomb parameters to produce factor of safety
estimates close to the limit analysis results, provided
modifications are made to the underlying formulations.
Such modifications have been made in the software
SLIDE, where a set of equivalent Mohr–Coulomb para-
meters are calculated at the base of each individual slice.
This approach predicts factors of safety remarkably close
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to the limit analysis solutions that are based on the native
form of the Hoek–Brown criterion.
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