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PREFACE

This book gives the material for a course on Soil Dynamics, as given for about 10 years at the Delft University of Technology for students of
civil engineering, and updated continuously since 1994.

The book presents the basic principles of elastodynamics and the major solutions of problems of interest for geotechnical engineering. For
most problems the full analytical derivation of the solution is given, mainly using integral transform methods. These methods are presented
briefly in an Appendix. The elastostatic solutions of many problems are also given, as an introduction to the elastodynamic solutions, and as
possible limiting states of the corresponding dynamic problems. For a number of problems of elastodynamics of a half space exact solutions
are given, in closed form, using methods developed by Pekeris and De Hoop. Some of these basic solutions are derived in full detail, to assist
in understanding the beautiful techniques used in deriving them. For many problems the main functions for a computer program to produce
numerical data and graphs are given, in C. Some approximations in which the horizontal displacements are disregarded, an approximation
suggested by Westergaard and Barends, are also given, because they are much easier to derive, may give a first insight in the response of a
foundation, and may be a stepping stone to solving the more difficult complete elastodynamic problems.

The book is directed towards students of engineering, and may be giving more details of the derivations of the solutions than strictly neces-
sary, or than most other books on elastodynamics give, but this may be excused by my own difficulties in studying the subject, and by helping
students with similar difficulties.

The book starts with a chapter on the behaviour of the simplest elementary system, a system consisting of a mass, suppported by a linear
spring and a linear damper. The main purpose of this chapter is to define the basic properties of dynamical systems, for future reference. In
this chapter the major forms of damping of importance for soil dynamics problems, viscous damping and hysteretic damping, are defined and
their properties are investigated.

Chapters 2 and 3 are devoted to one dimensional problems: wave propagation in piles, and wave propagation in layers due to earthquakes
in the underlying layers, as first developed in the 1970’s at the University of California, Berkeley. In these chapters the mathematical methods
of Laplace and Fourier transforms, characteristics, and separation of variables, are used and compared. Some simple numerical models are also
presented.

The next two chapters (4 and 5) deal with the important effect that soils are ususally composed of two constituents: solid particles and a
fluid, usually water, but perhaps oil, or a mixture of a liquid and gas. Chapter 4 presents the classical theory, due to Terzaghi, of semi-static
consolidation, and some elementary solutions. In chapter 5 the extension to the dynamical case is presented, mainly for the one dimensional
case, as first presented by De Josselin de Jong and Biot, in 1956. The solution for the propagation of waves in a one dimensional column is
presented, leading to the important conclusion that for most problems a practically saturated soil can be considered as a medium in which the



solid particles and the fluid move and deform together, which in soil mechanics is usually denoted as a state of undrained deformations. For an
elastic solid skeleton this means that the soil behaves as an elastic material with Poisson’s ratio close to 0.5.

Chapters 6 and 7 deal with the solution of problems of cylindrical and spherical symmetry. In the chapter on cylindrically symmetric
problems the propagation of waves in an infinite medium introduces Rayleigh’s important principle of the radiation condition, which expresses
that in an infinite medium no waves can be expected to travel from infinity towards the interior of the body.

Chapters 8 and 9 give the basic theory of the theory of elasticity for static and dynamic problems. Chapter 8 also gives the solution for some
of the more difficult problems, involving mixed boundary value conditions. The corresponding dynamic problems still await solution, at least
in analytic form. Chapter 9 presents the basics of dynamic problems in elastic continua, including the general properties of the most important
types of waves : compression waves, shear waves, Rayleigh waves and Love waves, which appear in other chapters.

Chapter 10, on confined elastodynamics, presents an approximate theory of elastodynamics, in which the horizontal deformations are
artificially assumed to vanish, an approximation due to Westergaard and generalized by Barends. This makes it possible to solve a variety of
problems by simple means, and resulting in relatively simple solutions. It should be remembered that these are approximate solutions only,
and that important features of the complete solutions, such as the generation of Rayleigh waves, are excluded. These approximate solutions
are included in the present book because they are so much simpler to derive and to analyze than the full elastodynamic solutions. The full
elastodynamic solutions of the problems considered in this chapter are given in chapters 11 — 13.

In soil mechanics the elastostatic solutions for a line load or a distributed load on a half plane are of great importance because they
provide basic solutions for the stress distribution in soils due to loads on the surface. In chapters 11 and 12 the solution for two corresponding
elastodynamic problems, a line load on a half plane and a strip load on a half plane, are derived. These chapters rely heavily on the theory
developed by Cagniard and De Hoop. The solutions for impulse loads, which can be found in many publications, are first given, and then
these are used as the basics for the solutions for the stresses in case of a line load constant in time. These solutions should tend towards the
well known elastostatic limits, as they indeed do. An important aspect of these solutions is that for large values of time the Rayleigh wave is
clearly observed, in agreement with the general wave theory for a half plane. Approximate solutions valid for large values of time, including
the Rayleigh waves, are derived for the line load and the strip load. These approximate solutions may be useful as the basis for the analysis of
problems with a more general type of loading.

Chapter 13 presents the solution for a point load on an elastic half space, a problem first solved analytically by Pekeris. The solution is
derived using integral transforms and an elegant transformation theorem due to Bateman and Pekeris. In this chapter numerical values are
obtained using numerical integration of the final integrals.

In chapter 14 some problems of moving loads are considered. Closed form solutions appear to be possible for a moving wave load, and for a
moving strip load, assuming that the material possesses some hysteretic damping.

Chapter 15, finally, presents some practical considerations on foundation vibrations. On the basis of solutions derived in earlier chapters
approximate solutions are expressed in the form of equivalent springs and dampings.

This is the version of the book in PDF format, which can be downloaded from the author’s website <http://geo.verruijt.net>, and can be
read using the ADOBE ACROBAT reader. This website also contains some computer programs that may be useful for a further illustration of



the solutions. Updates of the book and the programs will be published on this website.

The text has been prepared using the IXTEX version (Lamport, 1994) of the program TEX (Knuth, 1986). The P[CTEX macros (Wichura,
1987) have been used to prepare the figures, with color being added in this version to enhance the appearance of the figures. Modern software
provides a major impetus to the production of books and papers in facilitating the illustration of complex solutions by numerical and graphical
examples. In this book many solutions are accompanied by parts of computer programs that have been used to produce the figures, so that
readers can compose their own programs. It is all the more appropriate to acknowledge the effort that must have been made by earlier authors
and their associates in producing their publications. A case in point is the famous paper by Lamb, more than a century ago, with many
illustrative figures, for which the computations were made by Mr. Woodall.

Thanks are due to Professor A.T. de Hoop for his many helpful and constructive comments and suggestions, and to Dr. C. Cornejo Cérdova
for several years of joint research. Many comments of other colleagues and students on early versions of this book have been implemented in
later versions, and many errors have been corrected. All remaining errors are the author’s responsibility, of course. Further comments will be
greatly appreciated.

Delft, September 1994; Papendrecht, March 2009 Arnold Verruijt

Merwehoofd 1

3351 NA Papendrecht

The Netherlands

tel. +31.78.6154399

e-mail : a.verruijt@verruijt.net
website : http://geo.verruijt.net
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Chapter 1

VIBRATING SYSTEMS

In this chapter a classical basic problem of dynamics will be considered, for the purpose of introducing various concepts and properties. The
system to be considered is a single mass, supported by a linear spring and a viscous damper. The response of this simple system will be
investigated, for various types of loading, such as a periodic load and a step load. In order to demonstrate some of the mathematical techniques
the problems are solved by various methods, such as harmonic analysis using complex response functions, and the Laplace transform method.

1.1 Single mass system

Consider the system of a single mass, supported by a spring and a dashpot, in which the damping is of a viscous character, see Figure 1.1. The
spring and the damper form a connection between the mass and an immovable base
F (for instance the earth).
According to Newton’s second law the equation of motion of the mass is

d*u
Mo = P(t), (1.1)
where P(t) is the total force acting upon the mass m, and u is the displacement of

the mass.

[T LTI It is now assumed that the total force P consists of an external force F(t), and
the reaction of a spring and a damper. In its simplest form a spring leads to a force
Figure 1.1: Mass supported by spring and damper. linearly proportional to the displacement u, and a damper leads to a response linearly
proportional to the velocity du/dt. If the spring constant is k and the viscosity of the

damper is ¢, the total force acting upon the mass is

P(t)=F(t) — ku —c—. 1.2
(1) = F(t) — bu— (12)
Thus the equation of motion for the system is
d*u du
mog te + ku= F(t), (1.3)
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The response of this simple system will be analyzed by various methods, in order to be able to compare the solutions with various problems
from soil dynamics. In many cases a problem from soil dynamics can be reduced to an equivalent single mass system, with an equivalent mass,
an equivalent spring constant, and an equivalent viscosity (or damping). The main purpose of many studies is to derive expressions for these
quantities. Therefore it is essential that the response of a single mass system under various types of loading is fully understood. For this purpose
both free vibrations and forced vibrations of the system will be considered in some detail.

1.2 Characterization of viscosity

The damper has been characterized in the previous section by its viscosity c. Alternatively this element can be characterized by a response time
of the spring-damper combination. The response of a system of a parallel spring and damper to a unit step load of magnitude Fy is

u= 20— exp(-/1,)), (1.4)

where t, is the response time of the system, defined by
t, = c/k. (1.5)

This quantity expresses the time scale of the response of the system. After a time of say t ~ 4t, the system has reached its final equilibrium
state, in which the spring dominates the response. If ¢ < ¢, the system is very stiff, with the damper dominating its behaviour.

1.3 Free vibrations

When the system is unloaded, i.e. F(t) = 0, the possible vibrations of the system are called free vibrations. They are described by the
homogeneous equation
d?u du
m—s +c— + ku = 0. 1.6
dt? dt (16)
An obvious solution of this equation is © = 0, which means that the system is at rest. If it is at rest initially, say at time ¢ = 0, then it remains at
rest. It is interesting to investigate, however, the response of the system when it has been brought out of equilibrium by some external influence.

For convenience of the future discussions we write
wo =V k/m, (1.7)

a c cw c
0
2 ) t’l‘ j— — — . 1 .8
¢ 0 mwo k vkm ( )
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The quantity wg will turn out to be the resonance frequency of the undamped system, and ¢ will be found to be a measure for the damping in
the system.
With (1.7) and (1.8) the differential equation can be written as

d*u du 9
el + 24(00% + wou = 0. (19)

This is an ordinary linear differential equation, with constant coefficients. According to the standard approach in the theory of linear differential
equations the solution of the differential equation is sought in the form

u = Aexp(at), (1.10)
where A is a constant, probably related to the initial value of the displacement u, and « is as yet unknown. Substitution into (1.9) gives
a® + 2Cwoa + wi = 0. (1.11)

This is called the characteristic equation of the problem. The assumption that the solution is an exponential function, see eq. (1.10), appears
to be justified, if the equation (1.11) can be solved for the unknown parameter c. The possible values of « are determined by the roots of the
quadratic equation (1.11). These roots are, in general,

Q12 = —Cwo iwo\/ CQ —1. (112)

These solutions may be real, or they may be complex, depending upon the sign of the quantity ¢2 — 1. Thus, the character of the response of the
system depends upon the value of the damping ratio ¢, because this determines whether the roots are real or complex. The various possibilities
will be considered separately below. Because many systems are only slightly damped, it is most convenient to first consider the case of small
values of the damping ratio (.

Small damping
When the damping ratio is smaller than 1, ¢ < 1, the roots of the characteristic equation (1.11) are both complex,

Q1.2 = —Cwoiiwm/l—@, (1.13)
where 7 is the imaginary unit, ¢ = /—1. In this case the solution can be written as

u = Ay exp(iwit) exp(—Cwot) + Az exp(—iwit) exp(—Cwot), (1.14)
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where
w1 :wovl—@. (115)

The complex exponential function exp(iwit) may be expressed as
exp(iwit) = cos(wit) + isin(wit). (1.16)
Therefore the solution (1.14) may also be written in terms of trigonometric functions, which is often more convenient,
u = C4 cos(wrt) exp(—Cwot) + Ca sin(wst) exp(—Cwot). (1.17)

The constants C; and C5 depend upon the initial conditions. When these initial conditions are that at time ¢ = 0 the displacement is given to
be ug and the velocity is zero, it follows that the final solution is

u  cos(wit — 1)
w o cos@) exp(—Cwot), (1.18)

where 1) is a phase angle, defined by

fan(w) = 28— & (1.19)

w1 m '
The solution (1.18) is a damped sinusoidal vibration. It is a fluc-
u/ug tuating function, with its zeroes determined by the zeroes of the
function cos(wit — ), and its amplitude gradually diminishing,
1.0 according to the exponential function exp(—Cwot).
/ The solution is shown graphically in Figure 1.2 for various val-
ues of the damping ratio (. If the damping is small, the frequency

\ / N\ / A of the vibrations is practically equal to that of the undamped sys-
0.0 T 2 3 : 5m tem, wy, see also (1.15). For larger values of the damping ratio

0% \ j \ wot the frequency is slightly smaller. The influence of the frequency
on the amplitude of the response then appears to be very large.

\07 For large frequencies the amplitude becomes very small. If the
’ frequency is so large that the damping ratio ¢ approaches 1 the

~1.0 ¢-=0.0

character of the solution may even change from that of a damped

Figure 1.2: Free vibrations of a weakly damped system. fluctuation to the non-fluctuating response of a strongly damped
system. These conditions are investigated below.
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Critical damping
When the damping ratio is equal to 1, { = 1, the characteristic equation (1.11) has two equal roots,
Q12 = —Wo. (1.20)
In this case the damping is said to be critical. The solution of the problem in this case is, taking into account that there is a double root,
u = (A + Bt) exp(—wot), (1.21)

where the constants A and B must be determined from the initial conditions. When these are again that at time ¢t = 0 the displacement is wug
and the velocity is zero, it follows that the final solution is

u = ug(1 4+ wot) exp(—wot). (1.22)

This solution is shown in Figure 1.3, together with some results for large damping ratios.

Large damping

When the damping ratio is greater than 1 (¢ > 1) the character-
u/up istic equation (1.11) has two real roots,

1.0 Q12 = 7(&)0 + woV/ §2 — 1. (123)
¥\' The solution for the case of a mass point with an initial displace-
P ment ug and an initial velocity zero now is
é}\k\g,\x u w
0.0 i 2n e dr Ul wot — =2 exp(—wit) — exp(—wsat), (1.24)
Ug w9 — W1 w2 — w1
where
~1.0 Wi = WO(C Y, <'2 - 1)3 (125)
Figure 1.3: Free vibrations of a strongly damped system. and

wo = wol(C + /2 —1). (1.26)

This solution is also shown graphically in Figure 1.3, for { = 2 and ( = 5. It appears that in these cases, with large damping, the system will
not oscillate, but will monotonously tend towards the equilibrium state u = 0.
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1.4 Forced vibrations

In the previous section the possible free vibrations of the system have been investigated, assuming that there was no load on the system. When
there is a certain load, periodic or not, the response of the system also depends upon the characteristics of this load. This case of forced vibrations
is studied in this section and the next. In the present section the load is assumed to be periodic.

For a periodic load the force F'(t) can be written, in its simplest form, as

F = Fycos(wt), (1.27)

where w is the given circular frequency of the load. In engineering practice the frequency is sometimes expressed by the frequency of oscillation
f, defined as the number of cycles per unit time (cps, cycles per second),

f=w/2m. (1.28)
In order to study the response of the system to such a periodic load it is most convenient to write the force as
F = R{Fyexp(iwt)}, (1.29)

where the symbol R indicates the real value of the term between brackets. If it is assumed that Fj is real the two expressions (1.27) and (1.29)
are equivalent.
The solution for the displacement u is now also written in terms of a complex variable,

u = R{U exp(iwt)}, (1.30)
where U in general will appear to be complex. Substitution of (1.30) and (1.29) into the differential equation (1.3) gives
(k +icw — mw?)U = Fy. (1.31)

Actually, only the real part of this equation is obtained, but it is convenient to add the (irrelevant) imaginary part of the equation, so that a
fully complex equation is obtained. After all the calculations have been completed the real part should be considered only, in accordance with
(1.30).

The solution of the problem defined by equation (1.31) is

Fo/k

= 1.32
1+ 2iCw/wy — w?/wd’ (132)

where, as before,

wo =V k/m, (1.33)
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and
c cwy c

=—=—=——. 1.34
¢ MWy k vVEkm ( )

The quantity wq is the resonance frequency of the undamped system, and ( is a measure for the damping in the system.

With (1.30) and (1.32) the displacement is now found to be

u = ug cos(wt — ), (1.35)

where the amplitude ug is given by
Fy/k

VI = W)+ (2¢w/wo)?

ug =

(1.36)

and the phase angle 1 is given by

2¢w/wy
t =—. 1.37
any 1—w?/wi (1.37)
In terms of the original parameters the amplitude can be written as
Fo/k
Uy = o/ , (1.38)
V({1 = mw?/k)2 + (cw/k)2
and in terms of these parameters the phase angle 1 is given by
cw/k
t = 1.39
any 1 —mw?/k (1.39)
It is interesting to note that for the case of a system of zero mass these expressions tend towards simple limits,
Fy/k
m=0 : uy= 0k (1.40)
V1+ (ew/k)?
and cw
m=0 : tany = —. (1.41)

k

The amplitude of the system, as described by eq. (1.36), is shown graphically in Figure 1.4, as a function of the frequency, and for various values
of the damping ratio (. It appears that for small values of the damping ratio there is a definite maximum of the response curve, which even
becomes infinitely large if ¢ — 0. This is called resonance of the system. If the system is undamped resonance occurs if w = wg = \/k/m. This
is sometimes called the eigen frequency of the free vibrating system.
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1
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1
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1 2 3 4 5

Figure 1.4: Amplitude of forced vibration.

w/wo

One of the most interesting aspects of the solution is the
behaviour near resonance. Actually the maximum response
occurs when the slope of the curve in Figure 1.4 is horizontal.
This is the case when dug/dw = 0, or, with (1.36),

duo _ . @ _ o, (1.42)

dw wo

For small values of the damping ratio ¢ this means that the
maximum amplitude occurs if the frequency w is very close
to wy, the resonance frequency of the undamped system. For
large values of the damping ratio the resonance frequency may
be somewhat smaller, even approaching 0 when 2¢? approaches
1. When the damping ratio is very large, the system will never
show any sign of resonance. Of course the price to be paid for

this very stable behaviour is the installation of a damping element with a very high viscosity.

(4

R N

1 2 3 4 5

Figure 1.5: Phase angle of forced vibration.

w/wo

The phase angle ¥ is shown in a similar way in Figure 1.5.
For small frequencies, that is for quasi-static loading, the am-
plitude of the system approaches the static response Fy/k, and
the phase angle is practically 0. In the neighbourhood of the
resonance frequency of the undamped system (i.e. if w/wy = 1)
the phase angle is about 7/2, which means that the amplitude
is maximal when the force is zero, and vice versa. For very
rapid fluctuations the inertia of the system may prevent prac-
tically all vibrations (as indicated by the very small amplitude,
see Figure 1.4), but the system moves out of phase, as indicated
by the phase angle approaching m, see Figure 1.5.
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Dissipation of work

An interesting quantity is the dissipation of work during a full cycle. This can be derived by calculating the work done by the force during a
full cycle,

2m
W= P8 (1.43)
wt=0 dt
With (1.27) and (1.35) one obtains
W = wFyug sin. (1.44)

Because the duration of a full cycle is 27 /w the rate of dissipation of energy (the dissipation per second) is
D =W =1 Fyuyw sine. (1.45)

This formula expresses that the dissipation rate is proportional to the amplitudes of the force and the displacement, and also to the frequency.
This is because there are more cycles per second in which energy may be dissipated if the frequency is higher. The proportionality factor sin ),
which depends upon the phase angle 1, and thus upon the viscosity ¢, see (1.8), finally expresses the relative part of the energy that is dissipated.
The maximum of this factor is 1, if the displacement and the force are out of phase. Its minimum is 0, when the viscosity of the damper is zero.

Using the expressions for tan ) and Fy/ug given in eqs. (1.36) and (1.37) the formula for the energy dissipation per cycle can also be written
in various other forms. One of the simplest expressions appears to be

W = mcwud. (1.46)

This shows that the energy dissipation is zero for static loading (when the frequency is zero), or when the viscosity vanishes. It may be noted
that the formula suggests that the energy dissipation may increase indefinitely when the frequency is very large, but this is not true. For very
high frequencies the displacement ug becomes very small. In this respect the original formula, eq. (1.44), is a more useful general expression.

1.5 Equivalent spring and damping

The analysis of the response of a system to a periodic load, as characterized by a time function exp(iwt), often leads to a relation of the form
F = (K +iCw)U, (1.47)

where U is the amplitude of a characteristic displacement, F' is the amplitude of the force, and K and C' may be complicated functions of the

parameters representing the properties of the system, and perhaps also of the frequency w. Comparison of this relation with eq. (1.31) shows
that this response function is of the same character as that of a combination of a spring and a damper. This means that the system can be
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considered as equivalent with such a spring-damper system, with equivalent stiffness K and equivalent damping C. The response of the system
can then be analyzed using the properties of a spring-damper system. This type of equivalence will be used in chapter 15 to study the response
of a vibrating mass on an elastic half plane. The method can also be used to study the response of a foundation pile in an elastic layer. Actually,
it is often very convenient and useful to try to represent the response of a complicated system to a harmonic load in the form of an equivalent
spring stiffness K and an equivalent damping C'.

In the special case of a sinusoidal displacement one may write

u = S{U exp(iwt)} = U sin(wt), (1.48)
if U is real. The corresponding force now is, with (1.47),
F =S{(K 4 iCw)U exp(iwt) }, (1.49)

or,

F = {K sin(wt) + Cw cos(wt) }U. (1.50)

This is another useful form of the general relation between force and displacement in case of a spring K and damping C'.

1.6 Solution by Laplace transform method

It may be interesting to present also the method of solution of the original differential equation (1.3),
du
m—— +c— + ku = F(t), (1.51)

by the Laplace transform method. This is a general technique, that enables to solve the problem for any given load F(t), (Churchill, 1972). As
an example the problem will be solved for a step load, applied at time t = 0,

0, ift<0,
F(t) = { Fy, ift>0. (1.52)

It is assumed that at time ¢ = 0 the system is at rest, so that both the displacement u and the velocity du/dt are zero at time t = 0.
The Laplace transform of the displacement u is defined as

U= / u exp(—st) dt, (1.53)
0
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where s is the Laplace transform variable. The most characteristic property of the Laplace transform is that differentiation with respect to time

t is transformed into multiplication by the transform parameter s. Thus the differential equation (1.51) becomes

e F
(ms® +cs+ k)= / F(t) exp(—st)dt = =0
0 S

Again it is convenient to introduce the characteristic frequency wg and the damping ratio ¢, see (1.7) and (1.8), such that

k= wim,
and
c = 2¢muwy.

The solution of the algebraic equation (1.54) is

_ Fo/m

U= )

s(s+wy)(s+wa)

where

wi =wo(C — 1V 1= ¢,
and

w2 = wo(C +iv/1 = ¢?).

These definitions are in agreement with equations (1.25) and (1.26) given above.
The solution (1.57) can also be written as

_ Fo{ 1 1 N 1 }
U= — - )
m lwjwss  wi(wy —wi)(s+w1)  wa(ws —wi)(s+ws)

In this form the solution is suitable for inverse Laplace transformation. The result is

Fo{ 1 exp(—wit) n exp(—wat) }
U= — — .
m (wiws2 w1 (LOQ — wl) LUQ(WQ — wl)

Using the definitions (1.58) and (1.59) and some elementary mathematical operations this expression can also be written as

u= %{1 — [cos(woty/1 —¢2) + \/14_7@ sin(woty/1 — ¢?)] exp(waOt)}.

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)
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This formula applies for all values of the damping ratio ¢. For values larger than 1, however, the formula is inconvenient because then the factor
v/1 — (2 is imaginary. For such cases the formula can better be written in the equivalent form

1;; {1 — [cosh(wot /¢ — \/7 sinh(wot/¢% — 1)] exp( Cwot)}. (1.63)

For the case of critical damping, ¢ = 1, both formulas contain a factor 0/0, and the solution seems to degenerate. For that case a simple
expansion of the functions near { = 1 gives, however,

(=1 —{1— + wot) exp(— wot)}. (1.64)

Figure 1.6 shows the response of the system as a func-
ugk/ Fo tion of time, for various values of the damping ratio. It
appears that an oscillating response occurs if the damp-
ing is smaller than critical. When there is absolutely
no damping these oscillations will continue forever, but
damping results in the oscillations gradually vanishing.
The system will ultimately approach its new equilibrium
state, with a displacement Fy/k. When the damping is
sufficiently large, such that ¢ > 1, the oscillations are
suppressed, and the system will approach its equilibrium

1 &\ . . .
j; state by a monotonously increasing function.

[un—y

It has been shown in this section that the Laplace
transform method can be used to solve the dynamic prob-
lem in a straightforward way. For a step load this solution
method leads to a relatively simple closed form solution,
which can be obtained by elementary means. For other

wot types of loading the analysis may be more complicated,
however, depending upon the characteristics of the load

0 ™ 2w 3 4 51

Figure 1.6: Response to step load. function.
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1.7 Hysteretic damping

In this section an alternative form of damping is introduced, hysteretic damping, which may be better suited to describe the damping in soils.
Tt is first recalled that the basic equation of a single mass system is, see eq. (1.3),

d?u du
where c is the viscous damping.
In the case of forced vibrations the load is
F(t) = Fycos(wt), (1.66)

where Fj is a given amplitude, and w is a given frequency. As seen in section 1.4 the response of the system can be obtained by writing
u = R{U exp(iwt)}, (1.67)
where U may be complex. Substitution of (1.67) and (1.66) into the differential equation (1.65) leads to the equation
(k + icw — mw?)U = F. (1.68)

In section 1.4 it was assumed that the viscosity c is a constant. In that case the damping ratio ¢ was defined as

C CWo C
2 = = —_—— 1'69
C mwo k \/km’ ( )

where
wo = \Vk/m, (1.70)

the resonance frequency (or eigen frequency) of the undamped system. All this means that the influence of the damping depends upon the
frequency, see for instance Figure 1.4, which shows that the amplitude of the vibrations tends towards zero when w/wy — 0.

A different type of damping is hysteretic damping, which may be used to represent the damping caused in a vibrating system by dry friction.
In this case it is assumed that the factor cw/k is constant. The damping ratio (j, is now defined as

w
20, = wt,. = % (1.71)
It is often considered that hysteretic damping is a more realistic representation of the behaviour of soils than viscous damping. The main reason
is that the irreversible (plastic) deformations that occur in soils under cyclic loading are independent of the frequency of the loading. This can

be expressed by a constant damping ratio (; as defined here.
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Equation (1.68) can be written as
k(1 + 2i¢, — w? /W)U = Fy, (1.72)

with the solution
Fo/k

T 14200, — w? W

(1.73)

The displacement u now is
u = ug cos(wt — Py,), (1.74)

where the amplitude ug is given by
Fy/k
Uy = 0/ y (175)
V(1 - w?/uf)? +4¢;

and the phase angle 1, is given by

2Ch
t =—. 1.76
i = (1.76)
For a system of zero mass these expressions tend towards
uok/Fy A simple limits,
Fy/k
4 m=0 : uO:07/7 (1.77)
V14 4¢F
5 ¢rn=0.1
d
A ’

2 \ m=0 : tany, = 2(,. (1.78)
1 0.5 These formulas express that in this case both the am-
——Q“Olﬂ\ plitude and the phase shift are constant, independent of
0 - — w/wo the frequency w. This means that the response of the sys-
1 2 3 4 5 tem is independent of the speed of loading and unloading.

This is a familiar characteristic of materials such as soft
soils (especially granular materials) under cyclic loading.
For this reason hysteretic damping seems to be a more
realistic form of damping in soils than viscous damping (Hardin, 1965; Verruijt, 1999).

The amplitude of the system, as described by eq. (1.75), is shown graphically in Figure 1.7, as a function of the frequency, and for

Figure 1.7: Amplitude of forced vibration, hysteretic damping.
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(8

Ch = On.a (]/%//T/J/f‘r/”‘)_"//

(NI
3

/

0 w/wo
1 2 3 4 5 /

Figure 1.8: Phase angle of forced vibration, hysteretic damping.

various values of the hysteretic damping ratio (. The
behaviour is very similar to that of a system with vis-
cous damping, see Figure 1.4, except for small values of
the frequency. However, in this system the influence of
the mass dominates the response, especially for high fre-
quencies.

The phase angle is shown in Figure 1.8. Again it
appears that the main difference with the system having
viscous damping occurs for small values of the frequency.
For large values of the frequency the influence of the mass
appears to dominate the response of the system.

It should be noted that in the absence of mass the
response of a system with hysteretic damping is quite
different from that of a system with viscous damping, as
demonstrated by the difference between egs. (1.40) and
(1.77). In a system with viscous damping the amplitude

tends towards zero for high frequencies, see eq. (1.40), whereas in a system with hysteretic damping (and zero mass) the amplitude is independent

of the frequency, see eq. (1.77).



Chapter 2

WAVES IN PILES

In this chapter the problem of the propagation of compression waves in piles is studied. This problem is of importance when considering the
behaviour of a foundation pile and the soil during pile driving, and under dynamic loading, such as the behaviour of a pile in the foundation
of a railway bridge. Because of the one-dimensional character of the problem, and the simple shape of the pile, usually having a constant cross
section and a long length, this is one of the simplest problems of wave propagation in a mathematical sense, and therefore it may be used to
illustrate some of the main characteristics of engineering dynamics. Several methods of analysis will be used : the Laplace transform method,
separation of variables, the method of characteristics, and numerical solution methods.

2.1 One-dimensional wave equation

First, the case of a free standing pile will be considered, ignoring the interaction with the soil. In later sections the friction interaction with the
surrounding soil, and the interaction with the soil at the base will be considerd.
Consider a pile of constant cross sectional area A, consisting of a linear elastic material, with modulus of elasticity E. If there is no friction
along the shaft of the pile the equation of motion of an element is

N ON 0?
w
— = pA—, 2.1
0= or 21)
$ where p is the mass density of the material, and w is the displacement in axial direction. The normal
L force N is related to the stress by
N+ AN N =0A,

Figure 2.1: Element of pile. and the stress is related to the strain by Hooke’s law for the pile material

o = Fe.
Finally, the strain is related to the vertical displacement w by the relation
e = Jdw/0z.

24
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Thus the normal force IV is related to the vertical displacement w by the relation

ow
N=FA—. 2.2
P (2.2)
Substitution of eq. (2.2) into eq. (2.1) gives
Pw  Pw
52 =P (23)

This is the wave equation. It can be solved analytically, for instance by the Laplace transform method, separation of variables, or by the method
of characteristics, or it can be solved numerically. All these techniques are presented in this chapter. The analytical solution will give insight
into the behaviour of the solution. A numerical model is particularly useful for more complicated problems, involving friction along the shaft of
the pile, and non-uniform properties of the pile and the soil.

2.2 Solution by Laplace transform method

Many problems of one-dimensional wave propagation can be solved conveniently by the Laplace transform method (Churchill, 1972), see also
Appendix A. Some examples of this technique are given in this section.

2.2.1 Pile of infinite length
The Laplace transform of the displacement w is defined by

w(z,s) = /000 w(z,t) exp(—st) dt, (2.4)

where s is the Laplace transform parameter, which can be assumed to have a positive real part. Now consider the problem of a pile of infinite
length, which is initially at rest, and on the top of which a constant pressure is applied, starting at time ¢ = 0. The Laplace transform of the
differential equation (2.3) now is

d’w 2
where ¢ is the wave velocity,

c=+E/p. (2.6)

The solution of the ordinary differential equation (2.5) that vanishes at infinity is

w = Aexp(—sz/c). (2.7)
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The integration constant A, which may depend upon the transformation parameter s, can be obtained from the boundary condition. For a
constant pressure pg applied at the top of the pile this boundary condition is

ow
=0,t>0: E— = —po. 2.8
z , t> 92 Po ( )
The Laplace transform of this boundary condition is
dw Po
=0: E—=——. 2.9
: dz S (2:9)
With (2.7) the value of the constant A can now be determined. The result is
pc
A= — 2.10
Es?’ (2.10)
so that the final solution of the transformed problem is
_ pc
=15 exp(—sz/c). (2.11)

The inverse transform of this function can be found in elementary tables of Laplace transforms, see for instance Abramowitz & Stegun (1964)
or Churchill (1972). The final solution now is

_ pe(t = z/c)
w—TH(t—z/c), (2.12)

where H(t — to) is Heaviside’s unit step function, defined as

0, ift<to,

1, ift > to. (2.13)

H(t —tg) = {
The solution (2.12) indicates that a point in the pile remains at rest as long as ¢ < z/c. From that moment on (this is the moment of arrival of
the wave) the point starts to move, with a linearly increasing displacement, which represents a constant velocity.

It may seem that this solution is in disagreement with Newton’s second law, which states that the velocity of a mass point will linearly
increase in time when a constant force is applied. In the present case the velocity is constant. The moving mass gradually increases, however, so
that the results are really in agreement with Newton’s second law : the momentum (mass times velocity) linearly increases with time. Actually,
Newton’s second law is the basic principle involved in deriving the basic differential equation (2.3), so that no disagreement is possible, of course.
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2.2.2 Pile of finite length

The Laplace transform method can also be used for the analysis of waves in
z=0 z=nh piles of finite length. Many solutions can be found in the literature (Churchill,
1972; Carslaw & Jaeger, 1948). An example will be given below.

Consider the case of a pile of finite length, say h, see Figure 2.2. The
boundary z = 0 is free of stress, and the boundary z = h undergoes a sudden
displacement at time ¢ = 0. Thus the boundary conditions are

Figure 2.2: Pile of finite length.

ow
=0,t>0: — =0, 2.14
z P (2.14)
and
z=h,t>0 : w=w. (2.15)
The general solution of the transformed differential equation
d*w  s?_
is
w = Aexp(sz/c) + Bexp(—sz/c). (2.17)

The constants A and B (which may depend upon the Laplace transform parameter s) can be determined from the transforms of the boundary

conditions (2.14) and (2.15). The result is

wp cosh(sz/c)
s cosh(sh/c)’

The mathematical problem now remaining is to find the inverse transform of this expression. This can be accomplished by using the complex

inversion integral (Churchill, 1972), or its simplified form, the Heaviside expansion theorem, see Appendix A. This gives, after some elementary

mathematical analysis,

(2.18)

w =

w 4 K (—Dk Tz wet
— =1—-— —_ 2k +1)— 2k +1)—|. 2.19
o - kZ:O 2kt 1) cos[(2k + )2h} cos[(2k + )Zh] (2.19)
As a special case one may consider the displacement of the free end z = 0,
w 4 K (—1)k met
=0: —=1-— —_ 2k +1)—|. 2.20
: wo T £e 2k + 1) cos[(2k +1) 5] (2:20)

k=0
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w/wo This expression is of the form of a Fourier series. Actually, it is the same

series as the one given in the example in Appendix A, except for a constant
factor and some changes in notation. The summation of the series is shown
in Figure 2.3.

It appears that the end remains at rest for a time h/c, then suddenly
shows a displacement 2wy for a time span 2h/c, and then switches continu-
ously between zero displacement and 2wg. The physical interpretation, which
may become more clear after considering the solution of the problem by the
method of characteristics in a later section, is that a compression wave starts
to travel at time ¢ = 0 towards the free end, and then is reflected as a tension
0 1 9 3 4 5 wave in order that the end remains free. The time h/c is the time needed
for a wave to travel through the entire length of the pile.

Figure 2.3: Displacement of free end.

2.3 Separation of variables

For certain problems, especially problems of continuous vibrations, the differential equation (2.3) can be solved conveniently by a method known
as separation of variables. Two examples will be considered in this section.

2.3.1 Shock wave in finite pile

As an example of the general technique used in the method of separation of variables the problem of a pile of finite length loaded at time t = 0
by a constant displacement at one of its ends will be considered once more. The differential equation is

Pw  , Pw
—=c = 2.21
oz~ ¢ 822 (2.21)
with the boundary conditions
ow
=0,t>0: — =0 2.22
2=, o0, (222
and
z=h,t>0 : w=uwy. (2.23)

The first condition expresses that the boundary z = 0 is a free end, and the second condition expresses that the boundary z = h is displaced by
an amount wy at time ¢ = 0. The initial conditions are supposed to be that the pile is at rest at ¢ = 0.
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The solution of the problem is now sought in the form
w=wo + Z(2)T(t). (2.24)

The basic assumption here is that solutions can be written as a product of two functions, a function Z(z), which depends upon z only, and
another function 7'(t), which depends only on ¢. Substitution of (2.24) into the differential equation (2.21) gives

11d°T 1d*Z
= — = (2.25)
AT dt? Z dz?

The left hand side of this equation depends upon ¢ only, the right hand side depends upon z only. Therefore the equation can be satisfied only
if both sides are equal to a certain constant. This constant may be assumed to be negative or positive. If it is assumed that this constant is

negative one may write
1d*Z
- = _)2 2.26
- T3 : (2.26)

where A is an unknown constant. The general solution of eq. (2.26) is
7Z = Cq cos(Az) + Cysin(Az), (2.27)

where C} and Cs are constants. They can be determined from the boundary conditions. Because dZ/dz must be 0 for z = 0 it follows that
Cy = 0. If now it is required that Z = 0 for z = h, in order to satisfy the boundary condition (2.23), it follows that a non-zero solution can be
obtained only if cos(Ah) = 0, which can be satisfied if

A:Ak=(2k+1)%, k=0,1,2,.... (2.28)
On the other hand, one obtains for the function T’
1 d*T 9
141 2y 2.29
Taez 7 (2.29)
with the general solution
T = Acos(Act) + Bsin(Act). (2.30)
The solution for the displacement w can now be written as
w = wy + Z [Ag cos(Aget) + By sin(Aget)] cos(Az). (2.31)

k=0
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The velocity now is

88—1: = Z [—ApApesin(Agcet) + BiAgccos(Agct)] cos(Agz). (2.32)

k=0
Because this must be zero for t = 0 and all values of z, to satisfy the initial condition of rest, it follows that By = 0. Furthermore, the initial
condition that the displacement must also be zero for ¢t = 0, now leads to the equation

Z A cos(Agz) = —wo, (2.33)
k=0

which must be satisfied for all values of z in the range 0 < z < h. This is the standard problem from Fourier series analysis, see Appendix A. It
can be solved by multiplication of both sides by cos();z), and then integrating both sides over z from z = 0 to z = h. The result is

4 Wo

A= G

(—1)*. (2.34)

Substitution of this result into the solution (2.31) now gives finally, with By = 0,

2 (—1)k T2 mC
—14 % kzzo (2(161)1) cos[(2k + 1)%} cos|[(2k + 1)2—;] (2.35)

w
wo
This is exactly the same result as found earlier by using the Laplace transform method, see eq. (2.19). It may give some confidence that both
methods lead to the same result.
The solution (2.35) can be seen as a summation of periodic solutions, each combined with a particular shape function. Usually a periodic
function is written as cos(wt). In this case it appears that the possible frequencies are

e

w=uwg = (2k—|—1)2h,

k=0,1,2,.... (2.36)

These are usually called the characteristic frequencies, or eigen frequencies of the system. The corresponding shape functions

E],

Yr(z) = cos[(2k +1) 5T

k=0,1,2,..., (2.37)

are the eigen functions of the system.
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2.3.2 Periodic load

The solution is much simpler if the load is periodic, because then it
I can be assumed that all displacements are periodic. As an example

% the problem of a pile of finite length, loaded by a periodic load at
one end, and rigidly supported at its other end, will be considered,
see Figure 2.4. In this case the boundary conditions at the left side
boundary, where the pile is supported by a rigid wall or foundation, is

Figure 2.4: Pile loaded by periodic pressure.

z=0: w=0. (2.38)
The boundary condition at the other end is
z=h : o= Eaa—w = —pp sin(wt), (2.39)
z

where / is the length of the pile, and w is the frequency of the periodic load.
It is again assumed that the solution of the partial differential equation (2.3) can be written as the product of a function of z and a function
of t. In particular, because the load is periodic, it is now assumed that

w = W(z) sin(wt). (2.40)

Substitution into the differential equation (2.3) shows that this equation can indeed be satisfied, provided that the function W (z) satisfies the
ordinary differential equation
eEwW WP

=—— 241
dz? 2 (2.41)
where ¢ = \/F/p, the wave velocity.
The solution of the differential equation (2.41) that also satisfies the two boundary conditions (2.38) and (2.39) is
W(z) = _ poc sin(wz/c) (2.42)

Ew cos(wh/c)’
This means that the final solution of the problem is, with (2.42) and (2.40),

_ poc sin(wz/c) .
w(z,t) = —i cos(@h/c) sin(wt). (2.43)
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It can easily be verified that this solution satisfies all requirements, because it satisfies the differential equation, and both boundary conditions.
Thus a complete solution has been obtained by elementary procedures. Of special interest is the motion of the free end of the pile. This is found
to be

w(h,t) = wy sin(wt), (2.44)
where poc
wy = —ﬁ tan(wh/c). (2.45)
The amplitude of the total force, Fy = —pgA, can be written as
EA w
Fh=— ———wy. 2.46
0 ¢ tan(wh/c) o (246)
Resonance
It may be interesting to consider the case that the frequency w is equal to one of the eigen frequencies of the system,
me
w=wr=2k+1)— k=0,1,2,.... (2.47)

2h’

In that case cos(wh/c) = 0, and the amplitude of the displacement, as given by eq. (2.45), becomes infinitely large. This phenomenon is called
resonance of the system. If the frequency of the load equals one of the eigen frequencies of the system, this may lead to very large displacements,
indicating resonance.

In engineering practice the pile may be a concrete foundation pile, for which the order of magnitude of the wave velocity ¢ is about 3000 m/s,
and for which a normal length % is 20 m. In civil engineering practice the frequency w is usually not very large, at least during normal loading.
A relatively high frequency is say w = 20 s~!. In that case the value of the parameter wh/c is about 0.13, which is rather small, much smaller
than all eigen frequencies (the smallest of which occurs for wh/c = 7/2). The function tan(wh/c) in (2.46) may now be approximated by its

argument, so that this expression reduces to

EA

This means that the pile can be considered to behave, as a first approximation, as a spring, without mass, and without damping. In many
situations in civil engineering practice the loading is so slow, and the elements are so stiff (especially when they consist of concrete or steel),
that the dynamic analysis can be restricted to the motion of a single spring.

It must be noted that the approximation presented above is is not always justified. When the material is soft (e.g. soil) the velocity of wave
propagation may not be that high. And loading conditions with very high frequencies may also be of importance, for instance during installation
(pile driving). In general one may say that in order for dynamic effects to be negligible, the loading must be so slow that the frequency is
considerably smaller than the smallest eigen frequency.
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2.4 Solution by characteristics

A powerful method of solution for problems of wave propagation in one dimension is provided by the method of characteristics. This method is
presented in this section.
The wave equation (2.3) has solutions of the form

w = fi(z — ct) + fa(z + ct), (2.49)
where f; and fo are arbitrary functions, and c is the velocity of propagation of waves,
c=+E/p. (2.50)

In mathematics the directions z = ct and z = —ct are called the characteristics. The solution of a particular problem can be obtained from the
general solution (2.49) by using the initial conditions and the boundary conditions.
A convenient way of constructing solutions is by writing the basic equations in the following form

do v
— =p= 2.51
5 = P o (2.51)
do v
— =F— 2.52
ot 0z’ (2:52)
where v is the velocity, v = w/dt, and o is the stress in the pile.
In order to simplify the basic equations two new variables £ and 7 are introduced, defined by
E=z—ct, n=2z+ct. (2.53)
The equations (2.51) and (2.52) can now be transformed into
Jdo  Odo dv  0Ov
— 4 = = pe(—=— + —), 2.54
et o= G 5 (254
Jdo  Jdo dv  Ov
e i il 2.55
from which it follows, by addition or subtraction of the two equations, that
(o —J
9o —Jv) _ 0, (2.56)

on
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(o + Jv)
—— =0 2.57
o¢ : (2.57)
where J is the impedance,
J = pc=+/FEp. (2.58)
In terms of the original variables z and ¢ the equations are
(o — Jv)
—= =0, 2.59
0(z + ct) (2.59)
(o + Jv)
= v _ 2.60
d(z — ct) (2:60)
These equations mean that the quantity ¢ — Jv is independent of z 4 ct, and ¢ 4+ Jv is independent of z — ct. This means that
o—Jv=fi(z —ct), (2.61)
o+ Jv = fa(z+ct). (2.62)

These equations express that the quantity o — Jv is a function of z — ct only, and that o + Jv is a function of z + ¢t only. This means that o — Jv

p

ct

—-p

Figure 2.5: The method of characteristics.

is constant when z — ¢t is constant, and that o + Jv is constant
when z + ct is constant. These properties enable to construct
solutions, either in a formal analytical way, or graphically, by
mapping the solution, as represented by the variables o and Jv,
onto the plane of the independent variables z and ct.

As an example let there be considered the case of a free pile,
which is hit at its upper end z = 0 at time ¢ = 0 such that
the stress at that end is —p. The other end, z = h, is free, so
that the stress is zero there. The initial state is such that all
velocities are zero. The solution is illustrated in Figure 2.5. In
the upper figure, the diagram of z and ct has been drawn, with
lines of constant z — ¢t and lines of constant z + ct. Because
initially the velocity v and the stress o are zero throughout
the pile, the condition in each point of the pile is represented
by the point 1 in the lower figure, the diagram of o and Jv.
The points in the lower left corner of the upper diagram (this
region is marked 1) can all be reached from points on the axis
¢t = 0 (for which ¢ = 0 and Jv = 0) by a downward going



Arnold Verruijt, Soil Dynamics : 2. WAVES IN PILES 35

characteristic, i.e. lines z — ¢t = constant. Thus in all these points o — Jv = 0. At the bottom of the pile the stress is always zero, o = 0. Thus
in the points in region 1 for which z = 0 the velocity is also zero, Jv = 0. Actually, in the entire region 1 : o = Jv = 0, because all these points
can be reached by an upward going characteristic and a downward going characteristic from points where ¢ = Jv = 0. The point 1 in the lower
diagram thus is representative for all points in region 1 in the upper diagram.

For ¢ > 0 the value of the stress o at the upper boundary z = 0 is —p, for all values of t. The velocity is unknown, however. The axis z = 0
in the upper diagram can be reached from points in the region 1 along lines for which z 4 ¢t = constant. Therefore the corresponding point in
the diagram of ¢ and Jv must be located on the line for which ¢ + Jv = constant, starting from point 1. Because the stress ¢ at the top of the
pile must be —p the point in the lower diagram must be point 2. This means that the velocity is Jv = p, or v = p/J. This is the velocity of
the top of the pile for a certain time, at least for ¢t = 2h, if h is the length of the pile, because all points for which z = 0 and ¢t < 2h can be
reached from region 1 along characteristics z + ¢t = constant.

At the lower end of the pile the stress o must always be zero, because the pile was assumed to be not supported. Points in the upper diagram
on the line z = h can be reached from region 2 along lines of constant x — ct. Therefore they must be located on a line of constant N — Jv in
the lower diagram, starting from point 2. This gives point 3, which means that the velocity at the lower end of the pile is now v = 2p/.J. This
velocity applies to all points in the region 3 in the upper diagram.

In this way the velocity and the stress in the pile can be an-
alyzed in successive steps. The thick lines in the upper diagram
are the boundaries of the various regions. If the force at the
top continues to be applied, as is assumed in Figure 2.5, the
velocity of the pile increases continuously. Figure 2.6 shows the
velocity of the bottom of the pile as a function of time. The
velocity gradually increases with time, because the pressure p
at the top of the pile continues to act. This is in agreement
with Newton’s second law, which states that the velocity will Figure 2.6: Velocity of the bottom of the pile.
increase linearly under the influence of a constant force.

ct

2.5 Reflection and transmission of waves

An interesting aspect of wave propagation in continuous media is the be-
= haviour of waves at surfaces of discontinuity of the material properties. In
order to study this phenomenon let us consider the propagation of a short
Figure 2.7: Non-homogeneous pile. shock wave in a pile consisting of two materials, see Figure 2.7. A compres-
sion wave is generated in the pile by a pressure of short duration at the left

end of the pile. The pile consists of two materials : first a stiff section, and then a very long section of smaller stiffness.




Arnold Verruijt, Soil Dynamics : 2. WAVES IN PILES 36

In the first section the solution of the problem of wave propagation can be written as
v=wv1 = f1(z — c1t) + fa(z + c1t), (2.63)

oc=o01=—pic1fi1(z — c1t) + prc1 fa(z + eit), (2.64)

where p; is the density of the material in that section, and ¢; is the wave velocity, ¢; = \/E1/p1. It can easily be verified that this solution
satisfies the two basic differential equations (2.51) and (2.52),

Oo ov

— =p= 2.65
5 = P o (2.65)

do v
— =F—. 2.66
ot 0z ( )

In the second part of the pile the solution is

v =1vy = g1(z — cat) + g2(z + cal), (2.67)
0 =03 = —p2cagi(z — cat) + pacaga(z + cat), (2.68)

where ps and ¢y are the density and the wave velocity in that part of the pile.
At the interface of the two materials the value of z is the same in both solutions, say z = h, and the condition is that both the velocity v
and the normal stress o must be continuous at that point, at all values of time. Thus one obtains

fi(h —e1t) + fa(h + e1t) = g1 (h — caot) + ga(h + cat), (2.69)
—prc1fi(h —e1t) + preyfa(h 4 e1t) = —pacagi(h — cat) + pacaga(h + cot). (2.70)
If we write

fi(h —eit) = Fi(t), (2.71)
fa(h+ cit) = Fa(t), (2.72)
g1(h — cat) = G1(t), (2.73)
g2(h + cat) = Ga(t), (2.74)

then the continuity conditions are
Fi(t) + Fa(t) = G1(t) + Ga(t) (2.75)

—0101F1(t) + plchQ(t) = —pQCQGl(t) + pQCQGQ(t). (276)
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In general these equations are, of course, insufficient to solve for the four functions. However, if it is assumed that the pile is very long (or, more
generally speaking, when the value of time is so short that the wave reflected from the end of the pile has not yet arrived), it may be assumed
that the solution representing the wave coming from the end of the pile is zero, Go(t) = 0. In that case the solutions F5 and G; can be expressed
in the first wave, F;, which is the wave coming from the top of the pile. The result is

pP1C1 — P2C2
Fo(t) = ——==F(t), 2.77
o(t) = P2 (2.77)
2p1c1
Gi(t) = ——— Fi(t), 2.78
1) p1C1 + p2ce 1(®) ( )

This means, for instance, that whenever the first wave Fiy(t) = 0 at the interface, then there is no reflected wave, F5(t) = 0, and there is no
transmitted wave either, G1(t) = 0. On the other hand, when the first wave has a certain value at the interface, then the values of the reflected
wave and the transmitted wave at that point may be calculated from the relations (2.77) and (2.78). If the values are known the values at later
times may be calculated using the relations (2.71) — (2.74).

The procedure may be illustrated by an example. Therefore let it be assumed that the two parts of the pile have the same density, p1 = po,
but the stiffness in the first section is 9 times the stiffness in the rest of the pile, F1 = 9F5. This means that the wave velocities differ by a
factor 3, ¢; = 3ca. The reflection coefficient and the transmission coefficient now are, with (2.77) and (2.78),

O (2.79)
pic1 + paca
2
T, =P g5 (2.80)
p1€1 + p2c2

The behaviour of the solution is illustrated graphically in Figure 2.8, in which the left half shows the velocity profile at various times. In the
first four diagrams the incident wave travels toward the interface. During this period there is no reflected wave, and no transmitted wave in the
second part of the pile. As soon as the incident wave hits the interface a reflected wave is generated, and a wave is transmitted into the second
part of the pile. The magnitude of the velocities in this transmitted wave is 1.5 times the original wave, and it travels a factor 3 slower. The
magnitude of the velocities in the reflected wave is 0.5 times those in the original wave.

The stresses in the two parts of the pile are shown in graphical form in the right half of Figure 2.8. The reflection coefficient and the
transmission coefficient for the stresses can be obtained using the equations (2.64) and (2.68). The result is

R, = — P11 — P02 —0.5, (2.81)

pic1 + paco
2
T — P2C2

L= 22 5, (2.82)
p1€1 + p2c2
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Figure 2.8: Reflection and transmission of a shock wave.

where it has been taken into account that the form of the solution for the stresses, see (2.64) and (2.68), involves factors pe, and signs of the
terms different from those in the expressions for the velocity. In the case considered here, where the first part of the pile is 9 times stiffer than
the rest of the pile, it appears that the reflected wave leads to stresses of the opposite sign in the first part. Thus a compression wave in the pile
is reflected in the first part by tension.

It may be interesting to note the two extreme cases of reflection. When the second part of the pile is so soft that it can be entirely disregarded
(or, when the pile consists only of the first part, which is free to move at its end), the reflection coefficient for the velocity is R, = 1, and for the
stress it is R, = —1. This means that in this case a compression wave is reflected as a tension wave of equal magnitude. The velocity in the
reflected wave is in the same direction as in the incident wave.

If the second part of the pile is infinitely stiff (or, if the pile meets a rigid foundation after the first part) the reflection coefficient for the
velocity is R, = —1, and for the stresses it is R, = 1. Thus, in this case a compression wave is reflected as a compressive wave of equal
magnitude. These results are of great importance in pile driving. When a pile hits a very soft layer, a tension wave may be reflected from the
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end of the pile, and a concrete pile may not be able to withstand these tensile stresses. Thus, the energy supplied to the pile must be reduced
in this case, for instance by reducing the height of fall of the hammer. When the pile hits a very stiff layer the energy of the driving equipment
may be increased without the risk of generating tensile stresses in the pile, and this may help to drive the pile through this stiff layer. Of course,

IK t

1
2 4
1
Sm
z
P -
3
14 v
1
o

Figure 2.9: Graphical solution using characteristics.

2.6 Friction

great care must be taken when the pile tip suddenly passes from the very
stiff layer into a soft layer. Experienced pile driving operators use these basic
principles intuitively.

It may be noted that tensile stresses may also be generated in a pile when
an upward traveling (reflected) wave reaches the top of the pile, which by
that time may be free of stress. This phenomenon has caused severe damage
to concrete piles, in which cracks developed near the top of the pile, because
concrete cannot withstand large tensile stresses. In order to prevent this
problem, driving equipment has been developed that continues to apply a
compressive force at the top of the pile for a relatively long time. Also, the
use of prestressed concrete results in a considerable tensile strength of the
material.

The problem considered in this section can also be analyzed graphically,
by using the method of characteristics, see Figure 2.9. The data given above
imply that the wave velocity in the second part of the pile is 3 times smaller
than in the first part, and that the impedance in the second part is also 3
times smaller than in the first part. This means that in the lower part of
the pile the slope of the characteristics is 3 times smaller than the slope in
the upper part. In the figure these slopes have been taken as 1:3 and 1:1,
respectively. Starting from the knowledge that the pile is initially at rest
(1), and that at the top of the pile a compression wave of short duration
is generated (2), the points in the v, o-diagram, and the regions in the z, t-
diagram can be constructed, taking into account that at the interface both
v and ¢ must be continuous.

In soil mechanics piles in the ground usually experience friction along the pile shaft, and it may be illuminating to investigate the effect of this
friction on the mechanical behaviour of the pile. For this purpose consider a pile of constant cross sectional area A and modulus of elasticity F,
standing on a rigid base, and supported along its shaft by shear stresses that are generated by an eventual movement of the pile, see Figure 2.10.
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The differential equation is

v

0w 0w
FA— — C7m = pA—,
022 P o
where C' is the circumference of the pile shaft, and 7 is the shear stress. It is assumed, as a first
approximation, that the shear stress along the pile shaft is linearly proportional to the vertical
displacement of the pile,

(2.83)

T = kw, (2.84)

where the constant k has the character of a subgrade modulus. The differential equation (2.83)
can now be written as

o%w w 1 62w
FERl e A (2.85)

where H is a length parameter characterizing the ratio of the axial pile stiffness to the friction

_— > > > > s > > > >
— = = = = = = = = =

constant,
EA
H? = —, 2.86
and c is the usual wave velocity, defined by
Figure 2.10: Pile in soil, with friction.
Z=E/p. (2.87)
The boundary conditions are supposed to be
ow )
z=0: N= EAa— = —P sin(wt). (2.88)
z
z=L : w=0, (2.89)

The first boundary condition expresses that at the top of the pile it is loaded by a periodic force, of amplitude P and circular frequency w. The
second boundary condition expresses that at the bottom of the pile no displacement is possible, indicating that the pile is resting upon solid
rock.
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The problem defined by the differential equation (2.85) and the boundary conditions (2.88) and (2.89) can easily be solved by the method
of separation of variables. In this method it is assumed that the solution can be written as the product of a function of z and a factor sin(wt).
It turns out that all the conditions are met by the solution

PH sinh[a(L — 2)/H]

Y~ Fia cosh(aL/H) sin(wt), (2:90)

where « is given by
a=+/1—-w2H?/c. (2.91)

The displacement at the top of the pile, wy, is of particular interest. If this is written as
P
we = 2= sin(wt), (2.92)

the spring constant K appears to be
K- EA oL/H
L tanh(aL/H)
The first term in the right hand side is the spring constant in the absence of friction, when the elasticity is derived from the deformation of the
pile only.
The behaviour of the second term in eq. (2.93) depends upon the frequency w through the value of the parameter «, see eq. (2.91). It should
be noted that for values of wH/c > 1 the parameter o becomes imaginary, say « = i3, where now

8= PP @ 1, (2.94)

The spring constant can then be written more conveniently as

. (2.93)

EA BL/H

(2.95)
This formula implies that for certain values of wH/c the spring constant will be zero, indicating resonance. These values correspond to the eigen
values of the system. For certain other values the spring constant is infinitely large. For these values of the frequency the system appears to be
very stiff. In such a case part of the pile is in compression and another part is in tension, such that the total strains from bottom to top just
cancel.

The value of the spring constant is shown, as a function of the frequency, in Figure 2.11, for H/L = 1. This figure contains data for both
ranges of the parameters.

It is interesting to consider the probable order of magnitude of the parameters in engineering practice. For this purpose the value of the
subgrade modulus k£ must first be evaluated. This parameter can be estimated to be related to the soil stiffness by a formula of the type
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8 | | k = E;/D, where E; is the modulus of elasticity of the soil (assuming

| | that the deformations are small enough to justify the definition of

\ \ such a quantity), and D is the width of the pile. For a circular

4 v \\ concrete pile of diameter D the value of the characteristic length H
| now is, with (2.86),

EA E.D?
- kC 2B
\ \ T Under normal conditions, with a pile being used in soift soil, the ratio
\ \ \ of the elastic moduli of concrete and soil is about 1000, and most
\ \ piles have diameters of about 0.40 m. This means that H ~ 10 m.
\ \ | Furthermore the order of magnitude of the wave propagation velocity
\ ] l ¢ in concrete is about 3000 m/s. This means that the parameter wH /¢
-8 =6 ill usually be small compared to 1, except for phenomena of ver
I 2 i 5 78 9 10 will usually P ; P p y
wL/c high frequency, such as may occur during pile driving. In many civil
Figure 2.11: Spring constant (H/L = 1). engineering problems, where the fluctuations originate from wind or
wave loading, the frequency is usually about 1 s~! or smaller, so that
the order of magnitude of the parameter wH/c is about 0.01. In such cases the value of a will be very close to 1, see eq. (2.91). This indicates
that the response of the pile is practically static.
If the loading is due to the passage of a heavy train, at a velocity of 100 km/h, and with a distance of the wheels of 5 m, the period of the
loading is about 1/6 s, and thus the frequency is about 30 s~!. In such cases the parameter wH/c may not be so small, indicating that dynamic
effects may indeed be relevant.

0 \ H?

(2.96)

Infinitely long pile

A case of theoretical interest is that of an infinitely long pile, L — oco. If the frequency is low this limiting case can immediately be obtained
from the general solution (2.93), because then the function tanh(aL/H) can be approximated by its asymptotic value 1. The result is

EAa
This solution degenerates when the dimensionless frequency wH/c = 1, because then o = 0, see (2.91). Such a zero spring constant indicates
resonance of the system.
For frequencies larger than this resonance frequency the solution (2.95) can not be used, because the function tan(SL/H) continues to
fluctuate when its argument tends towards infinity. Therefore the problem must be studied again from the beginning, but now for an infinitely
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long pile. The general solution of the differential equation now appears to be
w = [Cysin(Bz/H) 4+ Cs cos(Bz/H)] sin(wt) + [Cssin(Bz/H) + Cycos(Bz/H)] cos(wt), (2.98)

and there is no combination of the constants Cy, C5, C3 and Cy for which this solution tends towards zero as z — oco. This dilemma can be
solved by using the radiation condition, which states that it is not to be expected that waves travel from infinity towards the top of the pile.
Therefore the solution (2.98) is first rewritten as

w = Dy sin(wt — Bz/H) + Dy cos(wt — fz/H) + D3 sin(wt + fz/H) + Dy cos(wt + Bz/H). (2.99)

Written in this form it can be seen that the first two solutions represent waves traveling from the top of the pile towards infinity, whereas the
second two solutions represent waves traveling from infinity up to the top of the pile. If the last two are excluded, by assuming that there is no
agent at infinity which generates such incoming waves, it follows that D3 = D4 = 0. The remaining two conditions can be determined from the
boundary condition at the top of the pile, eq. (2.88). The final result is

il sin(wt — Bz/H). (2.100)

P
L — oo, wHfc>1 : w:EAﬂ

This solution applies only if the frequency is larger than the eigen frequency of the system, which is defined by wH/c = 1. It may be noted that
the solution (2.100) also degenerates for wH/c = 1 because then = 0, see equation (2.94).

2.7 Numerical solution

In order to construct a numerical model for the solution of wave propagation problems the basic equations are written in a numerical form. For this
purpose the pile is subdivided into n elements, all of the same length Az. The displacement w; and the velocity v; of an element are defined in the
centroid of element 4, and the normal forces N; are defined at the boundary between el-

N;_1 ements i and ¢ + 1, see figure 2.12. The friction force acting on element i is de-
noted by F;. This particular choice for the definition of the various quantities ei-
ther at the centroid of the elements or at their boundaries, has a physical back-

l I l ground. The velocity derives its meaning from a certain mass, whereas the normal
F; wi F; force is an interaction between the material on both sides of a section. It is in-
teresting to note, however, that this way of modeling, sometimes denoted as leap frog

N; modeling, also has distinct mathematical advantages, with respect to accuracy and stabil-
ity.

Figure 2.12: Element of pile.
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The equation of motion of an element is

Vi (t + At) — Uy (t)

(i=1,...,n). (2.101)

It should be noted that there are n 4+ 1 normal forces, from Ny to N,,. The force Ny can be considered to be the force at the top of the pile, and
N, is the force at the bottom end of the pile.
The displacement w; is related to the velocity v; by the equation

Vi At {

i=1,...,n). (2.102)

The deformation is related to the normal force by Hooke’s law, which can be formulated as

Wit1 — Wy

N, = EA
Az

J(i=1,...,n—1). (2.103)

Here F A is the product of the modulus of elasticity E' and the area A of the cross section.
The values of the normal force at the top and at the bottom of the pile, Ny and N,, are supposed to be given by the boundary conditions.

Example

A simple example may serve to illustrate the numerical algorithm. Suppose that the pile is initially at rest, and let a constant force P be applied
at the top of the pile, with the bottom end being free. In this case the boundary conditions are

Ny = —P, (2.104)
and
N, = 0. (2.105)

The friction forces are supposed to be zero.
At time ¢ = 0 all quantities are zero, except Ny. A new set of velocities can now be calculated from equations (2.101). Actually, this will
make only one velocity non-zero, namely v, which will then be

N
- pAAZ

vy (2.106)
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Next, a new set of values for the displacements can be calculated from equations (2.102). Again, in the first time step, only one value will be
non-zero, namely

P(At)?
pAAz

Finally, a new set of values for the normal force can be calculated from equations (2.103). This will result in N; getting a value, namely

wyp = ’UlAt = (2107)

2 2
Ny = —pal — _pc(A

A e (2.108)

This process can now be repeated, using the equations in the same order.

An important part of the numerical process is the value of the time step used. The description of the process given above indicates that in each
time step the non-zero values of the displacements, velocities and normal forces increase by 1 in downward direction. This suggests that in each
time step a wave travels into the pile over a distance Az. In the previous section, when considering the analytical solution of a similar problem
(actually, the same problem), it was found that waves travel in the pile at a velocity

c=+E/p. (2.109)
Combining these findings suggests that the ratio of spatial step and time step should be
Az = cAt. (2.110)

It may be noted that this means that equation (2.106) reduces to

P

= —. 2.111
pAc ( )

U1

The expression in the denominator is precisely what was defined as the impedance in the previous section, see (2.58), and the value P/J
corresponds exactly to what was found in the analytical solution. Equation (2.107) now gives

wy = (2.112)

pAc’
and the value of Ny after one time step is found to be, from (2.108),

Ny =-P. (2.113)



Arnold Verruijt, Soil Dynamics : 2. WAVES IN PILES 46

Again this corresponds exactly with the analytical solution. If the time step is chosen different from the critical time step the numerical solution
will show considerable deviations from the correct analytical solution. This is usually denoted as numerical diffusion.

All this confirms the propriety of the choice (2.110) for the relation between time step and spatial step. In a particular problem the spatial
step is usually chosen first, by subdividing the pile length into a certain number of elements. Then the time step may be determined from
(2.110).

It should be noted that the choice of the time step is related to the algorithm proposed here. When using a different algorithm it may be
more appropriate to use a different (usually smaller) time step than the critical time step used here (Bowles, 1974).

1

Figure 2.13: Block wave in pile.

The calculations described above can be performed by the program IMPACT, for the case of a pile loaded at its top by a constant force,
for a short time. The main function in this program is given below, with the quantities S, V and W denoting the stress, the velocity and the
displacement.
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void Calculate(void)
{
int j;
if (T>TT) S[0]=0;else S[0]=1;
for (j=1;j<=N;j++) VI[j1+=(S[j1-S[j-11)/(RHO*C);
for (j=1;j<=N;j++) W[jl+=V[j1*DT;
for (j=1;j<N;j++) S[jI=Ex(W[j+1]1-W[jl)/DX;
}

The main function of the program IMPACT.

The program uses interactive input, in which the user may edit the input data before the calculations are started. The program will show
the stresses in the pile on the screen, in graphical form. An example is shown in Figure 2.13. In this case the pile has been subdivided into 500
elements, and the figure shows the stresses in the pile after 100, 200, ..., 1000 time steps. It appears that the block wave is traveling through
the pile without any deformation, and it is refelected at the free bottom as a tensile wave of the same magnitude. All this is in agreement with
the general theory presented in earlier sections of this chapter.

2.8 A simple model for a pile with friction

When there is friction along the shaft of the pile, this can be introduced through the variables F;, see equation (2.101). It should then be known
how the friction force depends upon variables such as the local displacement and the local velocity. A simple model is to assume that the friction
is proportional to the velocity, always acting in the direction opposite to the velocity. The program FRICTION can perform these calculations.
The main function of this program is reproduced below, for the case of one half of a sinusoidal wave applied at the top of the pile.

void Calculate(void)
{
int j;
if (T>TT) S[0]=0;else S[0]=(F/AREA)*sin(PI*T/TT);
for (j=1;j<=N;j++) V[jl+=(S[j1-S[j-1]-FR*DX*CIRC*V[j])/(RHO*AREA*C) ;
for (j=1;j<=N;j++) W[jl+=V[jI*DT;
for (j=1;j<N;j++) S[jI=ExAREAx(W[j+11-W[j1)/DX;
}

The main function of the program FRICTION.

The variable FR in this program is the shear stress generated along the shaft of the pile in case of a unit velocity (1 m/s). In professional
programs a more sophisticated formula for the friction may be used, in which the friction not only depends upon the velocity but also on the
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Figure 2.14: Block wave in pile, with friction.

displacement, in a non-linear way. Also a model for the resistance at the point of the pile may be introduced, and the possibility of a layered
soil, see for instance Bowles (1974).

Output of the program is shown in Figure 2.14. The pile has been divided into 200 elements, its length is 20 m, and its cross section is a
square of 0.40 m x 0.40 m. The maximum applied force is 100 kN, and the shear stress by friction is 1 kN/m? if the local velocity is 1 m/s.

Results for the stresses in the pile are shown after 100, 10100, ..., 40100 time steps. This means that between the succesive plots in the
figure the wave has traveled 50 times through the pile, up and down. It appears from the results that after a large number of time steps the
magnitude of the stresses is indeed decreased by the effect of friction.

It may be mentioned that the program becomes unstable if the friction constant is taken too large, or if the initial wave is discontinuous, as
in the case of a block wave. These unwanted effects can be eliminated by using a more sophisticated numerical model, such as the finite element
method, see for instance Brinkgreve & Vermeer (2002).
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Problems
2.1 A free pile is hit by a normal force of short duration. Analyze the motion of the pile by the method of characteristics, using a diagram
as in figure 2.5.

2.2  Extend the diagram shown in figure 2.9 towards the right, so that the reflected wave hits the top of the pile, and is again reflected there.

2.3 As a first order approximation of eq. (2.46) the response of a pile may be considered to be equivalent to a spring, see eq. (2.48). Show, by
using an approximation of the function tan(wh/c) by its first two terms, that a second order approximation is by a spring and a mass. Show,
by comparison with equation (1.38), that the equivalent mass is % of the total mass of the pile.

2.4 Verify some of the characteristic data shown in figure 2.11. For instance, check the values for wL/¢c = 0 and wL/¢c = 1, and check the
zeroes of the spring constant.



Chapter 3

EARTHQUAKES IN SOFT LAYERS

In this chapter the response of a soft soil layer to an earthquake in the base rock underlying the soft soil layer is considered, see Figure 3.1.

P
-
-

Figure 3.1: Soft soil on hard base rock.

An earthquake generates various waves in the rock, resulting in waves of vertical displace-
ments and horizontal displacements along the rock surface. These will generate compres-
sion waves and shear waves in the overlying soil. It is generally assumed that the most
important component is the wave of horizontal displacements at the rock surface, which
generates shear waves in the soil. Waves of vertical displacements at the rock surface
will generate compression waves in the soil, and these may lead to vertical displacements
of considerable magnitude, and damage of the structure on top of the soil, but usually
structural damage due to such vertical compression waves remains limited. It is usually
considered assumed that most structural damage is caused by shear waves in the soil, for
instance collapse of the columns in the structure. For this reason the considerations in
this chapter will be restricted to shear waves in the soil. Some solutions of this ground re-
sponse problem will be presented, mainly for a homogeneous linear elastic layer, carrying
a certain mass, representing the structure. The effect of hysteretic damping in the soft
soil will also be considered.

The type of model considered in this chapter is a typical example of an engineering
approximation, using certain assumptions (a thin layer of soft elastic soil on a hard base

rock of large depth, and a periodic wave in the rock, of relatively large wave length) that are supposed to be applicable in a large class of field
situations. The model has been developed at the University of California by Idriss & Seed (1968), and has later been generalized to a soil
consisting of several layers with non-linear properties, see for instance Kramer (1996). The model can be considered as a simplified case of a

Love wave, see chapter 9.

It should be noted that it is assumed that the soil is strong and stiff enough to accomodate the shear stresses produced by the shaking of
the base rock without failure of the soil. In particular, the possibility of liquefaction of a loose sandy soil is not considered. In areas where
earthquakes may be expected great care should be taken to avoid the risk of soil liquefaction, preferably by not building on loose soils, or
compacting such soils before any structure is built upon it. For a practical approach to the analysis of the liquefaction risk during earthquakes

see Seed & Idriss (1982).

50
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3.1 Earthquake parameters

It is assumed that the earthquake generates traveling waves in the base rock, which can be described by the following equation for the horizontal
displacements at the upper surface of the rock,
2t 2mx
u = ugsinfw(t — x/ca)] = up sin(wt — Aax) = g sin(T - L—), (3.1)
2
where u is the lateral displacement at the surface of the rock, ug its amplitude, w is the dominant frequency of the wave, and c5 is its propagation
velocity. The parameter A is the wave number. The wave period T and the wave length Lo of the wave are related to the frequency w and the

wave number Ao by the relations
27 2

—, A= —.
T T L
The propagation velocity can be related to the shear modulus o and the mass density p of the rock by the equation

c2 =/ 1/p- (3:3)

Normal values of the shear modulus of rock are of the order of magnitude of u ~ 10 GPa = 10'° kg/ms?, and normal values of the density of
the rock are of the order of magnitude of p ~ 2500 kg/m®. This means that normal values of the velocity of propagation are of the order of
magnitude of ¢o &~ 2000 m/s. These values are also representative of concrete, which can be considered as an artificial rock.

It should be noted that the stiffness of rock in engineering practice may be considerably smaller than the value given above, so that the
velocity of propagation may be smaller as well, say co = 1500 m/s.

The dominant period of the waves generated by an earthquake usually is in the range

w =

(3.2)

T=01s — 05s. (3.4)

In this chapter an average value of T'= 0.2 s will normally be used. In that case the dominant frequency is, with (3.2),

wr30s L (3.5)

Because Ay = w/cs it now follows that
A2 A 0.0150 m™!, (3.6)

so that the wave length is, with (3.2),
Lo ~ 400 m. (3.7)

The thickness of the layers of soft soil above the base rock often is in the range of h = 10 m — 40 m. This means that the wave length L is an
order of magnitude larger than the thickness h, see for instance Figure 3.2, in which the wave length is 10 times the thickness of the layer. This
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means that over a reasonably large horizontal distance the displacement at the bottom of the soil is the same. This justifies the assumption that
in the soil the wave is one-dimensional, in vertical direction. Or, to be more precise, it can be assumed that thoughout the soil the horizontal
displacements will be of the form

u= f(2)sinfw(t —x/c2)], (3.8)
where f(z) is a function of z only. The factor z/cy in equation (3.8) indicates that the horizontal coordinate x results in a phase shift of
magnitude x/cq, which is constant if = is constant.

Figure 3.2: Wave length compared to thickness of layer, Ly /h = 10.

3.2 Horizontal vibrations

In this section the propagation of horizontal vibrations in a column of elastic soil, generated by the horizontal motion in the base rock, is
considered. As mentioned above, it is assumed that in each column the problem is one-dimensional, with the displacement being a function of
the vertical coordinate z and time only.

The basic differential equation is the one-dimensional wave equation, which can be derived as follows. The first basic equation is the equation of
motion of an element of the column, see Figure 3.3,

Te—" —
or 0%u
b o 3.9
- 9. Parr (3:9)
where p is the density of the soil. The second equation is the equation of elasticity,
—5—>7+ (07/0z2)d=
z ou  Ow
T—M’Y—M(£+%)y (3.10)

Figure 3.3: Element of column.
where p is the shear modulus, and + is the shear deformation. It is now assumed, on the basis of the

observation from the previous section that the wave length Lo of the waves in z-direction is very large compared to the layer thickness h, that
the derivative Ow/Ox is small compared to du/0z. Thus equation (3.10) reduces to

ou
TERY =g (3.11)



Arnold Verruijt, Soil Dynamics : 3. EARTHQUAKES IN SOFT LAYERS 53

It now follows from equations (3.9) and (3.11) that

0%u 0%u
ﬁ = 02@, (312)
where c is the propagation velocity of shear waves in the soil,
c=\/p/p. (3.13)

Equation (3.12) is the wave equation.
It may be noted that usually the soil is a two phase medium, consisting of particles and water, but for shear deformations this has no effect.

3.2.1 Unloaded soil layer

For the simplest case, namely that of a homogeneous layer with no surface load, the boundary conditions may be supposed to be

z=h : u=ugpsinw(t —z/c2)], (3.14)
and 5
U
2=0: - =0, (3.15)

The first boundary condition expresses that at the lower boundary of the soil layer a sinusoidal wave is acting, and the second boundary condition
expresses that the top of the soil layer (the soil surface) is free of stress. The vertical displacement w has been disregarded, or, to be more
precise, it has been assumed that the derivative Ow/0x is small, compared to du/0z.

The solution of the problem defined by the equations (3.12), (3.14) and (3.15) is

cos(wz/c)

cos(@h/o) sinfw(t — x/c2)]. (3.16)

= uo
It can easily be verified that this solution satisfies all necessary conditions. The displacements are all in phase with the vibration of the base
rock. This is caused by the simplicity of the problem considered, without damping, for instance. If the amplitude of the displacements at the

top of the layer is denoted by wuy, it follows that
1

UOW. (317)

Uy =

This is always larger than the value at the base, because the function cos(wh/c) is always smaller than 1. For certain values of the frequency the

amplitude at the surface of the layer may become infinitely large, indicating resonance. The smallest frequency for which this occurs is when
wh/c=m/2, or

W=w = oo = 1571 <. (3.18)
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When the frequency w is expressed as 27 /T, where T is the period of the vibration, then the first occurrence of resonance is for a period

4h
T=T=—. (3.19)

Because h/c is the travel time of a single wave through the layer, upward or downward, this means that resonance occurs if the period of the
vibration is such that a wave travels 4 times through the layer. This can be understood by noting the effect of a quarter wave during which a
periodic shear stress is acting at the base of the layer. A shear wave will travel through the column, and will be reflected at the free top as a
shear wave of opposite sign. When this shear wave reaches the bottom of the column again, after having travelled over a length h, it will be
reflected at the rigid bottom as another shear wave of opposite sign. This in its turn will be reflected at the top of the column as a shear wave
of the original sign, and this wave has to travel over another column length h to arrive at the bottom of the column. Interference may take
place if the wave has travelled over a distance of 4h, and meets another wave of the same sign. This will be the case if the period of the wave
T = 4h/c. In this case an ever stronger wave will be generated in the soil layer, indicating resonance.
In dry soils the elastic modulus may be approximated by the expression

p~iCo,, (3.20)

where, for dynamic loading, C is the compression coefficient of the soil (which is about 250 — 2500 for sand, and 100 — 1000 for clay), and o, is
the vertical (effective) stress. The average stress in the layer is

oy & 2pgh, (3.21)
where g is the gravity constant (g ~ 10 m/s?). It now follows that the wave velocity ¢ can be approximated by

¢~ L1\/Cgh. (3.22)

For a layer of sand of 10 m thickness, assuming C' = 1000, the value of this wave velocity will be about 150 m/s, which is an order of magnitude
smaller than the wave velocity in rock-like materials. The value of the first eigen frequency now is, with eq. (3.18), w; ~ 25 s~!. As this may be
very close to the dominant frequency of earthquake motion, which was given as approximately 30 s~, see eq. (3.5), it follows that an earthquake
may lead to large displacements at the soil surface, if the conditions are unfavorable.

It should be noted that in this section damping, which is an essential property of soft soils, has not been taken into account. Damping will
be considered in a later section, and will be found to have a moderating effect, but first the case of a shear wave in a layer with a certain surface
load will be considered.

3.2.2 Soil layer with surface load
As a second example consider the case of a soil layer loaded by a mass at its surface, see Figure 3.4. In this case the boundary conditions are

z=h : u=ugpsinw(t —z/c2)], (3.23)
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and )
0%u Ju

where d is a measure for the surface load, with the mass of the surface load expressed as the thickness of an equivalent soil layer, and 7 is the
shear stress transmitted between the surface load and the foundation soil. Equation (3.24) can also be written as

0%u ou
=0 : demy =c*—. 2
z=0 52— ¢ 5, (3.25)
The solution of the problem defined by the equations (3.12), (3.23) and (3.25) is
u  cos(wz/c) — (wd/c)sin(wz/c) sinfu(t — 2/ca)]. (3.26)

ug  cos(wh/c) — (wd/c) sin(wh/c)

It can easily be verified that this solution satisfies all necessary conditions, and that it
reduces to the solution of the previous case if the mass of the surface load tends towards
zero (d — 0). As in the previous example the displacements are all in phase with the

] vibration of the base rock, as a result of the simplicity of the problem considered, with
- damping being di ded, for i
g@\@@g@% amping being disregarded, for instance.
. The amplitude of the vertical displacement at the top of the layer is
o
up 1 3.27
Figure 3.4: Soil layer with surface load. u cos(wh/c) — (wd/c) sin(wh/c)’ (3:27)

As an example one may consider the case of a sandy soil, with ¢ = 300 m/s and a wave of frequency w = 30 s~1. If the thickness of the soil
layer is 20 m, and the equivalent thickness of the surface load is 2 m (indicating a small house), the value of the parameters wh/c and wd/c is
2, respectively 0.2. In that case the amplitude at the top of the soil layer (and of the surface load) is found to be 1.67 times the amplitude at
the base, indicating a certain amplification of the effect of the earthquake. The amplification depends very much on the values of the various
parameters of the soil and the earthquake, and may be considerably larger than the value obtained in this example.

Actually, even resonance may occur, as indicated by an infinitely large amplitude, if the denominator of the fraction in eq. (3.27) vanishes.
If the smallest resonance frequency is again denoted by wy, its value can be determined from the condition

wid

( C

wih

) = cot( ; ). (3.28)

This will be considered in some more detail later, in section 5.4.3, with damping also taken into account.
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From a point of view of theoretical verification it is interesting to consider in particular the case of rather slow vibrations, when the parameter
wh/c is small compared to 1. In that case the resonance frequency wq, as defined by eq. (3.28), can be obtained from the relation

s po_ pA/h

R 3.29
V7 0d T phd T pAd (3.29)

where A is the area of the column considered. The quantity uA/h can be considered as the spring stiffness & of the column, and pAd is the total
mass m of the surface load. Thus the resonance frequency can also be written as

w] = —. 3.30

2= 2 (3:30)
This result is in perfect agreement with the result obtained in chapter 1 for the resonance frequency of a system of a discrete spring and mass.
It appears that the result obtained in this section is in agreement with the result for a discrete spring and mass if the dimensionless frequency
parameter is small enough (wh/c < 1). This is the case, for instance, if the soil is sufficiently stiff, or if the frequency is very small, or if the soil
layer is very thin.

3.3 Shear waves in a Gibson material

The stiffness of a soil usually increases with the effective stress, and thus with depth. A simple relation is obtained if it is assumed that the
shear modulus increases linearly with depth,

= poz/h. (3.31)
Stresses and deformations of materials of this type have been investigated extensively by Gibson (1967). For this reason the material is often

denoted as a Gibson material.
The basic differential equation is, for a non-homogeneous material,

O*u  or 9, Ou
= = (= 32
P " s 9:1as) (3.32)
where 7 is the shear stress. With (3.31) the differential equation now is found to be

1 9%u 20%u 10u
Zor ~no2 Thoy (3.33)

c=+/o/p- (3.34)

where now
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Again restriction is made to sinusoidal fluctuations,
u(z,t) = f(z)sinjw(t — x/c2)]. (3.35)

Substitution of this expression into (3.33) leads to the following ordinary differential equation for the function f,

d?f 1df w?h

— 4+ -—+——f=0. 3.36

dz?2  zdz + 2z ! (3:36)
The general solution of this equation is

f = AJo(2wVzh/c) + BYy(2wV'zh/c), (3.37)

where Jy(z) and Yy(x) are Bessel functions of order zero, and of the first and second kind, respectively (Abramowitz & Stegun, 1964).
Let the boundary condition at the surface be that the shear stress is zero,

z=0: 7=0. (3.38)

It then follows that the coefficient B must be zero. If the other boundary condition is that at a depth h the amplitude of the displacements is
U,

z=h : u=upsinw(t —z/c2)], (3.39)
then the coefficient A is found to be o
A= ———————. 4
To(@wh/c) (340)

The final solution now is

J0(2w\/%/c) .

= Uy—— t— . 3.41
u = g Jo@h/c) sinfw(t — z/c2) (3.41)
The amplitude at the surface is
Ug
= 3.42
Y= Jowhc) (342)

This is always larger than the amplitude at the base. For certain values of the frequency the amplitude even becomes infinitely large, again
indicating resonance. The smallest value of the frequency for which this occurs (to be denoted by wy) is determined by the first zero of the
Bessel function Jy(z), which occurs for x = 2.405 (Abramowitz & Stegun, 1964; p. 409). Hence

w; = 1.202 % (3.43)

This is about 23 % smaller than in the case of a homogeneous layer with its constant shear modulus equal to the value obtained here at a depth
z = h, see eq. (3.18).
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3.4 Hysteretic damping

In this section the influence of damping is investigated, for a homogenous linear elastic layer. This will appear to have a considerable effect,
reducing the displacements at the surface if the damping coefficient is large enough. The effect of damping on the surface vibrations of soft soil
layers produced by an earthquake in the underlying rock has been investigated by Idriss & Seed (1968), for a class of non-homogeneous layers,
with a shear modulus increasing with depth. The damping was introduced in that model by a friction force on each element proportional to
its velocity, simulating the resistance due to some viscous resistance, see also Das (1993) and Kramer (1996). In this chapter damping will be
introduced by a hysteretic effect in the stress-strain relation of the soil, simulating irreversible (plastic) deformations in each complete cycle.

3.4.1 Basic equations

The basic partial differential equation can be established by considering the equation of motion and the constitutive relation of the material.
The equation of motion is, as before, see (3.9),

or 9%u
— = p—. 3.44
9. o (3-44)
The constitutive relation is assumed to be
Sl N L P i (3.45)
= Ky Mrat—ﬂaz Mrataz’ .

where ¢, is the response time of the material, see Chapter 1, which may be used to characterize the damping of the material. For a viscous
material this can be considered to be a given constant. In such cases the effect of damping depends upon the frequemcy of the loading, with the
material becoming very stiff for very high frequencies. For soils this is not realistic, as the damping is considered to be produced by irreversible
plastic deformations of the material. In order to describe hysteretic damping it is assumed that the product wt, is constant. This can be taken
into account by introducing a dimensionless damping parameter ¢ such that

20 = wt,. (3.46)

The constitutive relation (3.45) can now be written as

ou 0?%u
=pu—+2 . A4
T=po 2u(C/w) 5 (3.47)
It follows from equations (3.44) and (3.47) that
10%u 0%u  2¢ O%u
— = 455 77 A4
2 o2 022 T ot0z2%’ (3.48)

which is the basic differential equation to be considered.
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For a harmonic vibration, with frequency w, the solution can be assumed to be of the form
u= f(2)sinfw(t — z/c2)] + g(2) cos|w(t — z/c2)]. (3.49)
Substitution into the differential equation shows that the functions f(z) and g( ) must satisfy the differential equations
?f  Ww?
dQ-i-ff— C =O, (3.50)
and 2 2/
dg w?
— 2(— =0. 3.51
PERNEE R (3:51)
The general solution of the system of equations (3.50) and (3.51) is
f=Arexp[(p +iq)z] + Az exp[(p — iq)z] + Az exp[—(p + iq)z] + Asexp[—(p — iq)z], 3.52)
g = —iA; exp[(p+iq)z] + 1Az exp[(p — iq)z] — iAs exp[—(p + iq)z] + iAg exp[—(p — iq)z], 3.53)
where p and ¢ must be determined from the equations
2.2
2 2 w/c
_?=— .54
P —q ek (3.54)
w?/c?
2pq = 2 . .
pq = 2C e (3.55)
The values of the parameters p and ¢ can most easily be determined by introducing the complex variable
p +iqg = rsin(¢) + ir cos(¢), (3.56)
so that
p = rsin(¢), q = rcos(e). (3.57)
The angle ¢ can then be determined from the condition
2¢ = arctan(2(), (3.58)
and the radius r can be determined from the condition 40t
4 w/c
T 1442 (3.59)

These parameters have been chosen such that they reduce to a simple form in the absence of damping. Actually, when ( = 0 the parameters

are p=0and ¢ = w/c.

The integration constants Ay, As, A3 and A4 in the general solution given in equations (3.52) and (3.53) must be determined from the
boundary conditions at the top and the bottom of the layer. Two cases will be considered : an unloaded soil layer and a layer with a given

surface load.
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3.4.2 Unloaded soil layer

For an unloaded soil layer the boundary conditions are

z=0:717=0. 3.60)
z=h : u=ugsinjw(t — z/c2)]. 3.61)
The four integration constants can easily be determined from these conditions. The final solution then is
Awu/ug = cosh(ph) cos(gh) cosh(pz) cos(gz) sin[w(t — x/c2)] + sinh(ph) sin(gh) sinh(pz) sin(gz) sinfw(t — x/c2)]
+ cosh(ph) cos(gh) sinh(pz) sin(gz) cos|w(t — x/ca)] — sinh(ph) sin(gh) cosh(pz) cos(gz) cos|w(t — x/ca)], (3.62)
where
A = cosh®(ph) — sin®(qh). (3.63)
If the amplitude of the vibration at the top is denoted by wu; its value is found to be
10
Ut 1

—_— = —. 3.64

uo \/Z ( )

g /o When there is no damping this solution reduces to the result obtained

i before, in eq. (3.17). Actually, for ¢ = 0 the quantity v/A reduces

1 to cos(wh/c), so that then the ratio of the two amplitudes becomes

5 1/ cos(wh/c), which is in agreement with eq. (3.17).

] ! The amplitude of the displacements at the top of the layer is shown,
C} =001 || as a function of the dimensionless frequency wh/c, and for three values of

! || / \ the damping ratio ¢, in Figure 3.5. For very small frequencies (wh/c —

'/\ i 0), i.e. for the static case, the displacement at the top is equal to

\C i_(lév — the displacement at the bottom, u;/ug = 1. Furthermore, it appears

0 =03 - that for very small values of the damping ratio very large values of the

0 wi? /e 0 displacements may be obtained for certain frequencies, near wh/c =

Figure 3.5: Amplitude of wave at the top of the layer.

increases.

7w/2, 37/2, ... etc. This is the resonance effect observed before, in
section 5.2.1. Finally, it follows from Figure 3.5 that the amplification
of the displacements is considerably reduced if the damping ratio ¢

The displacements are shown as a function of the vertical coordinate z in Figure 3.6, for wh/c =5, ¢ = 0.01 and ¢ = 0.2, and for four values
of time, namely wt = 0, 7/2, m, 37/2. For the case of small damping (¢ = 0.01) the amplification factor for the amplitude of the displacements
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at the top of the layer should be about 1/ cos(wh/c) = 3.525, see eq. (3.17). The results shown in the left part of Figure 3.6 appear to confirm
this value. The right part of the figure shows the influence of damping on the displacements. If the damping ratio is taken as ( = 0.2 the
amplitude of the displacements at the top is considerably smaller, as expected.

1 \ } 1

z/h / \ z/h

\/

0 5 05 0 5
u/ug u/ug

| ()
ot

Figure 3.6: Displacements as a function of depth, wh/c =5, ( =0.01 and ¢ = 0.2.

If the damping ratio is small, ( < 1, the amplitude of the wave at the top can be shown to be

Ut 1
<1l : — = , 3.65
¢ ug  \/W2(2 + cos2(W) (3.65)
where W is the dimensionless frequency,
W = wh/c. (3.66)
The largest value of the amplitude ratio occurs if W = 7/2,
Ut 2
1 ()~ 3.67
C < U@ / max 7TC ( )

For ¢ = 0 this is infinitely large, as seen before, see section 5.2.1. If { = 0.1 the maximum amplitude ratio should be approximately 6.366, using
equation (3.67). This value is confirmed by the data shown in Figure 3.5.
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3.4.3 Soil layer with surface load

A more general case than the previous one is the propagation of waves in a homogeneous linear elastic layer, with hysteretic damping, carrying
a surface load, see Figure 3.4. In this case the boundary conditions at the bottom of the layer is, as before,

z=h : u=ugpsinfw(t —z/c2)], (3.68)
and the boundary condition at the top is
0%u
z2=0 : pdﬁ =T, (3.69)

where d represents the surface load, expressed as an equivalent layer of soil, and where now the shear stress 7 is related to the horizontal

displacement u by equation (3.47),

ou 2

0“u
T = pge +2u(0/w) 5 (3.70)
It now follows from egs. (3.69) and (3.70) that the boundary condition at the top can be written as
d 0>v  Ou 2¢ 0%u
=0 =42 71
2=0 2 ot2 9z  w 0tdz’ (3.71)
The general solution of the problem for a material with hysteretic damping can been written in the form of equation (3.49),
u= f(2)sinfw(t — z/c2)] + g(2) cos|w(t — z/c2)]. (3.72)
where the functions f(z) and g(z) are given by equations (3.52) and (3.53). This solution can also be written as
u = C1 exp(pz) cos|w(t — x/c2 + qz)] + Caexp(pz) sinfw(t — x/ca + qz)] +
+C5 exp(—pz) cos|w(t — x/ca — qz)] + Cyexp(—pz) sinfw(t — z/ca — q2)]. (3.73)
This form is more convenient for the formulation of the boundary conditions.
Substitution of the general solution (3.73) into the two boundary conditions leads to the following four equations
d w?h? d w?h?
(ph — 2(qh + n e )C1 + (gh + 2¢ph)Cy — (ph — 2(qh — 5 o )C3 — (gh + 2¢ph)Cy = 0, (3.74)
d w?h? d w?h?
—(gh +2Cph)C1 + (ph — 26gh + 5 —5=)C2 + (¢h + 20ph)Cs — (ph — 2(gh — 5 —5—)Cs = 0, (3.75)
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exp(ph) cos(qgh)Cy + exp(ph) sin(gh)Cs + exp(—ph) cos(qgh)Cs — exp(—ph) sin(gh)Cy = 0, (3.76)
—exp(ph) sin(qgh)C1 + exp(ph) cos(qh)Cy + exp(—ph) sin(qh)Cs + exp(—ph) cos(qgh)Cy = uyg. (3.77)

The constants Cy, Co, C5 and Cy can be determined from these equations. A numerical solution of the system of four linear equations is probably
most convenient, especially because the data will be calculated by a simple computer program anyway. The parameters of the problem are the
dimensionless frequency wh/c, the damping ratio ¢, and the dimensionless mass of the load, expressed as the ratio d/h.
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Figure 3.7: Amplitude of wave at the top of the layer, { = 0.1 and ¢ = 0.5.

The amplitude of the vibrations at the top of the soil layer are shown in Figure 3.7, for { = 0.1 and ¢ = 0.5, and for three values of the load,
d/h =0, 1, 10. The results for d/h = 0 are in agreement with those shown in Figure 3.5 for ( = 0.1. The right part of the figure shows the
influence of damping on the displacements. If the damping ratio is taken as ( = 0.5 the amplitude of the displacements at the top is considerably
smaller, as can be expected.

3.5 Numerical solution
All the analytical solutions presented above suffer from the defect that the stress-strain-relationship must be of rather simple form (linear elastic,

with perhaps linear hysteretic damping), and that the soil properties must be homogeneous. Real soils are often composed of several layers
of variable properties, and often they exhibit non-linear properties. Therefore a numerical solution may be considered, because this can more
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easily be generalized to non-linear and non-homogeneous properties. In this section a simple numerical solution method is presented, again with
hysteretic damping.

The considerations will be restricted to one-dimensional problems, such as wave propagation in a soft layer, from a stiff deep layer to the
surface. For this relatively simple class of problems there is little difference between the various existing numerical techniques, such as finite
elements and finite differences. Therefore the simplest of these methods, an explicit finite difference method, will be used.

Basic equations

It is most convenient to base the numerical model upon a description of the basic equations in terms of the lateral displacement u, the lateral
velocity v, and the shear stress s. Let the soil layer be subdivided into a certain number (n) of elements, and let the velocity of a typical element be
denoted by v;, see Figure 3.8. The shear stress on the lower surface is denoted by 7;, and the shear stress at the upper surface is denoted by 7;_1.

The equation of motion of the element now is,
Ti-l <————

ov; T — T
| p QU T Tt (379)
— where Az is the thickness of the element. If the variable 7; is now expressed as 7; = p s; this equation
can also be written as
Figure 3.8: Shear wave. ov; 2 Si — Si—1
= — 3.79
ot Az (3.79)
where, as usual, c¢ is the shear wave velocity, ¢ = \/u/p. The finite difference form of equation (3.79) is
At
Ug =v; + A (8i —si-1), (3.80)
where v} represents the velocity after a time interval At. The velocity is the time derivative of the displacement,
5ui
;= , 3.81
U4 61) ( )
or, in finite difference form,
u), = u; + v; At (3.82)
The shear stress can be related to the shear strain by the equation
Ju v

T = pg + utT&, (3.83)
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where t, is the characteristic time of the damping effect. As before we write
2¢ = wt,, (3.84)

where ( is the dimensionless damping ratio, and where w is the frequency of the load, assuming that the load is periodic. This means that
eq. (3.83) can also be written as

ou  2C Ov
The finite difference form of this equation is
$i = (Uip1 — ug)/Az + (2¢/w) (Vi1 — v;)/Az. (3.86)

A numerical model can now be developed as follows. If the problem is again that of the propagation of a shear wave from a certain depth to
the surface of the soil, the boundary condition at the lower boundary of the layer can be considered to be

Up = dsin(wt), vy, = dw sin(wt), (3.87)

where d is the amplitude of the sinusoidal fluctuation, with frequency w. Using equation (3.86) the shear stresses at every level (from i = 1 to
i =mn —1) can now be calculated, assuming that the displacements in the layer itself are initially zero. Using eq. (3.80) the velocities at the end
of the time interval can then be calculated, and finally the displacements at the end of the time interval can be calculated using eq. (3.82), from
i =1toi=mn—1. This process can then be repeated for as many steps as desired.

The calculations can be executed by a computer program, with the main computation algorithm being reproduced below.

for (i=n-1;i>0;i--)
{
s[i]l=(uli+1]-u[i])/dz+(2*zeta/omega) * (v[i+1]-v[i]) /dz;
v[il=v[i]l+c*c*dt*(s[i]-s[i-1])/dz;
ulil=ulil+v[i]l*dt;
}

In a computer program the time step should be so small that instabilities are avoided. The magnitude of these time steps can most simply be
investigated by considering the basic equation (3.48),
1 02 0? 20 93
10w _Ou X Ju (3.88)
2 ot?2 022 w 0tdz?

For ¢ = 0 this equation reduces to the standard wave equation

1 0% 0%u
ER il (3.89)
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Numerical approximations of this equation, using the simples finite difference approximations, usually are stable if in each time step the wave
travels not more than a single spatial step. This leads to the following condition for the time step,

At < Az/c. (3.90)

This is the Courant condition, see Press et al. (1988).
For large values of the damping ratio ¢ the basic equation (3.88) reduces to a diffusion equation for the velocity,

10v 2¢ 0%
- =— —. 3.91
2ot w 022 (3.91)
This can be solved numerically by a stable process if the following stability criterion is satisfied, see e.g. Press et al. (1988),
wAZ?
At < ———. 3.92
~ 4¢c? ( )

It is suggested that in a computer program the time steps are taken small enough for both criteria to be satisfied.

A computer program using the method described here, QUAKE, may be used as an alternative to the analytical solutions presented in this
chapter, and may be used as a basis for more general problems, of non-homogeneous layers, and perhaps involving non-linear soil properties.
When comparing the results of a simple computer program with the analytical results it will be observed that there may be considerable
deviations, especially for small values of time. This is a result of the initial condition in the numerical solution. It may take many cycles of
vibrations before the numerical solution has reached the steady state that has been asssumed in the analytical solutions. Actually, during a real
earthquake the soil may not reach the steady state, and the results of a non-steady computation may be more realistic.

Problems

3.1 Investigate the influence of the frequency w and the damping ratio ¢ on the ratio of the displacements at the top and the bottom of a soft
soil layer.

3.2 Using the computer program QUAKE, verify that the results of the program are in agreement with the analytical results given earlier, at
least after many cycles of vibration.



Chapter 4

THEORY OF CONSOLIDATION

4.1 Consolidation

Soft soils such as sand and clay consist of small particles, and often the pore space between the particles is filled with water. In soil mechanics
this is denoted as a saturated or a partially saturated porous medium. The deformation of such porous media depends upon the stiffness of the
porous material, but also upon the behaviour of the fluid in the pores. If the permeability of the material is small, the deformations may be
considerably hindered, or at least retarded, by the pore fluid. The simultaneous deformation of the porous material and flow of pore fluid is the
subject of the theory of consolidation, often denoted as poroelasticity.

The theory was developed originally by Terzaghi (1925) for the one-dimensional case, and extended to three dimensions by Biot (1941),
and it has been studied extensively since. In Terzaghi’s original theory the pore fluid and the solid particles were assumed to be completely
incompressible. This means that deformations of the porous medium are possible only by a rearrangement of the particles, and that volume
changes must be accompanied by the expulsion of pore water. This is a good approximation of the real behaviour of soft soils, especially clay,
and also soft sands. Such soils are highly compressible (deformations may be as large as several percents), whereas the constituents, particles
and fluid are very stiff.

In later presentations of the theory, starting with those of Biot, compression of the pore fluid and compression of the particles has been
taken into account. This generalization made it possible to also consider the deformations of materials such as sandstone and other porous
rocks, which are very important in the engineering of deep reservoirs of oil or gas. The linear theory of poroelasticity (or consolidation) has
now reached a stage where there is practically general consensus of the basic equations, see e.g. De Boer (2000), Wang (2000), Coussy (2004),
Verruijt(2008).

In this chapter the basic equations of the general theory of linear consolidation are derived, for the case of a linear material, and for pseudo-
static deformations (in which inertial forces are disregarded). A simplified version of the theory, in which the soil deformation is assumed to
be strictly vertical, is also presented in this chapter. The analytical solutions for two simple examples are given. In the next chapter the
generalization to dynamics is presented.

Before deriving the basic equations of consolidation it is convenient to consider some of the basic principles underlying the theory, especially
the influence of the compressibilities of the two constituents (solid particles and pore fluid) on the behaviour of a porous medium in the absence
of drainage.

67
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4.1.1 Undrained compression of a porous medium

Consider an element of porous soil or rock, of porosity n, saturated with a fluid. The element is loaded, in undrained condition, by an isotropic
total stress Ao. The resulting pore pressure is denoted by Ap. In order to determine the relation between Ap and Ao the load is considered to
be applied in two stages : a first stage with an increment of pressure both in the fluid and in the soil particles of magnitude Ap, and a second
stage with a load on the soil, without any pore pressures, of magnitude Ao. Compatibility of the two stages, requiring that the total volume
change is the sum of the volume changes of the fluid and the solid particles, will be required only for the combination of the two stages.

In the first stage, in which the stress in both fluid and particles is increased by Ap, the volume change of the pore fluid is

AVf = 7’!7,CprV‘, (41)

where Cy is the compressibility of the pore fluid (which may include the compression of small amounts of isolated gas bubbles), and V is the
total volume of the element considered. The volume change of the particles is

AV, = —(1 —n)CsApV, (4.2)

where Cy is the compressibility of the solid material. Assuming that the solid particles all have the same compressibility, it follows that their
uniform compression leads to a volume change of the pore space as well (at this stage compatibility of the deformations of fluid and particles is
ignored) of the same magnitude. Thus the total volume change of the porous medium is

AV = —nCV. (4.3)
In the second stage the pressure in the fluid remains unchanged, so that there is no volume change of the fluid,
AV =0, (4.4)

The stress increment Ao — Ap on the soil, at constant pore pressure, leads to an average stress increment in the solid particles of magnitude
(Ao — Ap)/(1 — n). The resulting volume change of the particles is

AV, = —Cy(Ac — Ap)V. (4.5)

The volume change of the porous medium as a whole in this stage also involves the deformations due to sliding and rolling at the contacts of
the particles. Assuming that this is also a linear process, in a first approximation, it follows that in this stage of loading

AV = —Cp(Ac — Ap)V, (4.6)

where C,, is the compressibility of the porous medium. It is to be expected that this is considerably larger than the compressibilities of the
two constituents: fluid and solid particles, beacuse the main mechanism of soil deformation is not so much the compression of the fluid or the
particles, but rather the deformation due to a rearrangement of the particles, including sliding and rolling.
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Due to both these two loadings the volume changes are, for the fluid:

AVf = —’I”LCprV7 (47)
for the solid particles:
AVs = —(1 —=n)C;ApV — Cs(Ag — Ap)V, (4.8)
and for the porous medium as a whole:
AV = —C;ApV — Cp, (Ao — Ap)V. (4.9)

Because there is no drainage in the combined loading situation, by assumption, the total volume change must be equal to the sum of the volume
changes of the fluid and the particles, AV = AV; + AV;. This gives, with equations (4.7) — (4.8),

A _p_ 1
Ao 1+n(Cp—Cs)/(Cp —Cs)’

(4.10)

The derivation leading to this equation is due to Bishop (1973), but similar equations were given earlier by Gassmann (1951) and Geertsma
(1957). The ratio Ap/Ac under isotropic loading is often denoted by B in soil mechanics (Skempton, 1954). In early developments, such as in
Terzaghi’s publications, the compressibilities of the fluid and of the solid particles were disregarded, C'y = Cs = 0. In that case B = 1, which is
often used as a first approximation.

4.1.2 The principle of effective stress

The effective stress, introduced by Terzaghi (1925), is defined as that part of the total stresses that governs the deformation of the soil or rock.
It is assumed that the total stresses can be decomposed into the sum of the effective stresses and the pore pressure by writing

045 = 0ij + apdij, (4.11)

where o;; are the components of total stress, agj are the components of effective stress, p is the pore pressure (the pressure in the fluid in the
pores), d;; are the Kronecker delta symbols (6;; = 1 if ¢ = j and d;; = 0 otherwise), and « is Biot’s coefficient, which is unknown at this stage.

For the isotropic parts of the stresses it follows from equation (4.11) that
o=d+ap. (4.12)

In the case of an isotropic linear elastic porous material the relation between the volumetric strain € and the isotropic effective stress is of the
form

7 —CpAo’ = —C,,Ac — Crap, (4.13)

3
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where, as before, C,, denotes the compressibility of the porous material, the inverse of its compression modulus, C,, = 1/K. Equation (4.13)
should be in agreement with equation (4.9), which is the case only if

a=1-Cy/Ch. (4.14)

This expression for Biot’s coeflicient is generally accepted in rock mechanics (Biot & Willis, 1957) and in the mechanics of other porous materials,
such as bone or skin (Coussy, 2004). For soft soils the value of « is close to 1.
If the coefficient « is taken as 1, the effective stress principle reduces to

0ij = 05 + Pdij, (4.15)

This is the form in which the effective stress principle is often expressed in soil mechanics, on the basis of Terzaghi’s original work (1925, 1943).
This is often justified because soil mechanics practice usually deals with highly compressible clays or sands, in which the compressibility of the
solid particles is very small compared to the compressibility of the porous material as a whole. In this case the effective stress is also the average
of the forces transmitted in the isolated contact points between the particles. This is sometimes denoted as the intergranular stress.

4.2 Conservation of mass

One of the major principles in the theory of consolidation is that the mass of the two components, water and solid particles, must be conserved.
This will be formulated in this section.
z Consider a porous material, consisting of a solid matrix or an assembly of
particles, with a continuous pore space. The pore space is filled with a fluid,
npsvs + A(npysvz) usually water, but possibly some other fluid, or a mixture of fluids. The
average velocity of the fluid is denoted by v and the average velocity of the
:Ji solids is denoted by w. The densities are denoted by py and ps, respectively,
B APV and the porosity by n.
The equations of conservation of mass of the solids and the fluid can be
_ established by considering the flow into and out of an elementary volume,
- [~ 7 fixed in space, see figure 4.1.
P The mass of fluid in an elementary volume V is npsV. The increment
npve + AMnprug) 4. A . o . . e
* of this mass per unit time is determined by the net inward flux across the
surfaces of the element. In y-direction the flow through the left and the right
faces of the element shown in figure 4.1 (both having an area Az Az), leads
to a net outward flux of magnitude

A
N

npfuy | npsuy + A(npsoy)

xT

Figure 4.1: Conservation of mass of the fluid.
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A(npsuy)

A(nppuy)Ax Az = Ay

v,

where V denotes the volume Ax Ay Az. This leads to the following mass balance equation

Onpy) | O(npyvs) | O(npsvy) | Onpsv:)

=0. 4.16
ot Ox dy 0z ( )
Using vector notation this can also be written as
0
(gff) LV (npyv) = 0. (4.17)
The compressibility of the fluid can be expressed by assuming that the constitutive equation of the fluid is
dps
— =psCYy, 4.18
ap ~P1C (4.18)

which is in agreement with the definition of the fluid compressibility C; in equation (4.7). For pure water the compressibility is Cy ~
0.5 x 1072 m?2 /kN. For a fluid containing small amounts of a gas the compressibility may be considerably larger, however. It now follows from
equation (4.17) that

on dp

e + ana +V-(nv) =0, (4.19)

where a term expressing the product of the fluid velocity and the pressure gradient has been disregarded, assuming that both are small quantities,
so that the product is of second order.
The balance equation for the solid material is
a[(l — n)ps]
ot

It is now assumed that the density of the solid particles is a function of the isotropic total stress o and the fluid pressure p, so that

+ V- [(1 = n)psw] = 0. (4.20)

aps pscs 0o ap
= — —n= 4.21
o 1-nlar o) (4.21)
which is in agreement with equation (4.8). Equation (4.20) now reduces to
on do op
_Z — _px (1 = = 4.22
6‘t+ S(ﬁt nat)-i-v [(1—n)w] =0, (4.22)
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where again a term expressing the product of a velocity and a gradient of stress or pressure has been disregarded.
The time derivative of the porosity n can easily be eliminated from eqs. (4.22) and (4.19) by adding these two equations. This gives

dp do

+0, 52 =o. (4.23)

Vew+ Ve [n(v = w)] +0(Cs = Co) 5o+ Cag =

The quantity n(v — w) is the porosity multiplied by the relative velocity of the fluid with respect to the solids. This is precisely what is intended
by the specific discharge, which is the quantity that appears in Darcy’s law for the flow of a fluid through a porous medium. It will be denoted
by q,

q=n(v—w). (4.24)

If the displacement vector of the solids is denoted by u, the term V - w can also be written as de/dt, where ¢ is the volume strain,

e=V-u (4.25)
Equation (4.23) can now be written as
Oe dp do
— Cy—Cs Cs—=-V-q. 4.26
gt Tt Vot T O q (4.26)
Because the isotropic total stress can be expressed as ¢ = ¢’ + ap, see equation (4.12), and the isotropic effective stress can be related to the
volume strain by o’ = —¢/C,,, where C,, is the compressibility of the porous medium, see equation (4.13), it follows that equation (4.26) can
also be written as
6 + S % V. (4.27)
“or "o — VY '

where, as before, a =1 — C,/Cyy,, and S, is the storativity of the pore space,
Sp =nCr + (e — n)Cs. (4.28)

Equation (4.27) may be denoted as the storage equation. It is an important basic equation of the theory of consolidation. In its form (4.26)
it admits a simple heuristic interpretation: the compression of the soil consists of the compression of the pore fluid and the particles plus the
amount of fluid expelled from an element by flow. The equation actually expresses conservation of mass of fluids and solids, together with some
notions about the compressibilities.

It may be noted that in deriving equation (4.27) a number of assumptions have been made, but these are all relatively realistic. Thus, it has
been assumed that the solid particles and the fluid are linearly compressible, and some second order terms, consisting of the products of small
quantities, have been disregarded. The storage equation (4.27) can be considered as a reasonably accurate description of physical reality.
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4.3 Darcy’s law

In 1857 Darcy found, from experiments, that the specific discharge of a fluid in a porous material is proportional to the head loss. In terms of
the quantities used in this chapter Darcy’s law can be written as

K
q= —;(Vp — Prg)s (4.29)

where « is the (intrinsic) permeability of the porous material, p is the viscosity of the fluid, and g is the gravity vector. The permeability
depends upon the size of the pores. As a first approximation one may consider that the permeability  is proportional to the square of the
particle size.

If the coordinate system is such that the z-axis is pointing in upward vertical direction the components of the gravity vector are g, =0, g, =
0, g, = —g, and then Darcy’s law may also be written as

_nap _ KOp B E(@

kop —_E _ 4.30

Az

The product prg may also be written as v,,, the volumetric weight of the fluid.
In soil mechanics practice the coefficient in Darcy’s law is often expressed in terms of the hydraulic conductivity k rather than the permeability
k. This hydraulic conductivity is defined as

g = "PI9 (4.31)
"
This means that Darcy’s law can also be written as
k Op k Op k Op
= —— —, ==, ¢=—(= +70) 4.32
From these equations it follows that
9qs | Oqy | Og: k

V.q= =2 =-V-(—Vp), 4.33
a=GE+ Sl T - v (v (433

if again a small second order term (involving the spatial derivative of the hydraulic conductivity) is disregarded.
Substitution of (4.33) into (4.27) gives

Oe Op k

Compared to equation (4.27) the only additional assumption is the validity of Darcy’s law. As Darcy’s law usually gives a good description of
flow in a porous medium, equation (4.34) can be considered as reasonably accurate.
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4.4 Equilibrium equations

The complete formulation of a fully three-dimensional problem requires a consideration of the principles of solid mechanics, including equilibrium,

compatibility and the stress-strain-relations. In addition to these equations the initial conditions and the boundary conditions must be formulated.
These equations are presented here, for a linear elastic material.

The equations of equilibrium can be established by considering the stresses acting upon the six faces of an elementary volume, see figure 4.2.

In this figure only the six stress components in the y-direction are

# shown. The equibrium equations in the three coordinate directions

are
aam Jdo T aazw
: A o "oy T an o0
iazy + Aggy x Yy z
Ty 00yy  O0yy 00y
Ty oo Al <t o+ Acy, Ox Jy 0z Y
Uzy:“l’ ov 00, 0oy, 0o,
I ) S ] 8 + 8?! + a _ fz — 0,
gt x y z

where f., f, and f, denote the components of a possible body force.
In addition to these equilibrium conditions there are three equations
of equilibrium of moments. These can be taken into account most
conveniently by noting that they result in the symmetry of the stress

T

Figure 4.2: Equilibrium of element.

tensor,
Ozy = Oyx,
Oyz = Osy, (4.36)
Oz = Ogz-

The stresses in these equations are total stresses. They are considered positive for compression, in agreement with common soil mechanics
practice, but in contrast with the usual sign convention in solid mechanics.

The total stresses are related to the effective stresses by the generalized Terzaghi principle, see equation (4.11),
Ozx ZU;x‘f‘Olp» Oxy :U:Ipya Oxz :Ulzzv

— 5/ _ o !
Tyy = Tyy + ap, Oyz = Oyz» Oyx = Oyg» (437)

_ / _ / _ /
Oy, = 0,, + ap, Ozx = Oy, Ozy = Oy
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where « is Biot’s coefficient, « = 1 — Cs/C,,. The shear stresses can of course only be transmitted by the soil skeleton.
The effective stresses determine the deformations of the soil. As a first approximation the effective stresses are now supposed to be related
to the strains by the generalized form of Hooke’s law. For an isotropic material these relations are

oty = —(K — 2G)e — 2Geyy,, 0l = —2Geyy, ol, = —2Ge,.,

U;y =—(K - %G)s — 2Gey,y, J;Z = —2Gey., O';I = —2Gey,, (4.38)
o,=—(K— %G)a — 2Ge,., o, = —2Ge.y, a'zy = —2Ge,y,

where K and G are the elastic coefficients of the material, the compression modulus and the shear modulus, respectively. They are related to
the Lamé constants A and p by the relations

A=K-2G, G=p. (4.39)

The compression modulus (or bulk modulus) K is the inverse of the compressibility C,, of the porous medium K = 1/C,,. In soil mechanics the
compression modulus K and shear modulus G are often used as the two basic elastic coefficients because they so well describe the two different
modes of deformation: compression and shear.

The volume strain € in equations (4.38) is the sum of the three linear strains,

€ =Epp + Eyy + €2z (4.40)

The strain components are related to the displacement components by the compatibility equations

_ Ous _ 1 (U Ouy _ 1 (O Ou
fre = Thy Ez34_2(33; 8x)’ IZ_Q(az 8x)’
ou ou ou., ou Ouy
Eyyzaiyy» 5yz—%(375+ 8y>’ 5.741:%(37;"" dy ), (4.41)
_ Ou, 1 Oou, Ouy 1 ou, %
A E“_2<8$+8z)’ Ezy_2(8y+5z)'

This completes the system of basic field equations. The total number of unknowns is 22 (9 stresses, 9 strains, 3 displacements and the pore
pressure), and the total number of equations is also 22 (6 equilibrium equations, 9 compatibility equations, 6 independent stress-strain-relations,
and the storage equation).

The system of equations can be simplified considerably by eliminating the stresses and the strains, finally expressing the equilibrium equations
in the displacements. For a homogeneous material (when K and G are constant) these equations are
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Oe dp

K+iG)— Uy — o+ [y =
( +3G)ax+GVu a8x+f 0,
0 0
(K + %G)a—; + GV, — aa—z +f, =0, (4.42)
Oe dp
K+ 1G)— 2u, — a— L=
( +3G)8z+Gvu a@z+f 0,
where the volume strain € should now be expressed as
Ou, Ouy  Ou,
= - 4.4
T or * Oy 0z’ (4.43)
and the operator V? is defined as
0? 0? 02
2 _
V=2 T ar T o (4.44)

The system of differential equations now consists of the storage equation (4.34) and the equilibrium equations (4.42). These are 4 equations
with 4 variables: p, ug, uy and u,. The volume strain ¢ is not an independent variable, see equation (4.43).

The initial conditions are that the pore pressure p and the three displacement components are given at a certain time (say ¢t = 0). The
boundary conditions must be that along the boundary 4 conditions are given. One condition applies to the pore fluid: either the pore pressure or
the flow rate normal to the boundary must be specified. The other three conditions refer to the solid material: either the 3 surface tractions or
the 3 displacement components must be prescribed (or some combination). Many solutions of the consolidation equations have been published,
mainly for bodies of relatively simple geometry (half-spaces, half-planes, cylinders, spheres, etc.). (for references see Schiffman, 1984; Wang,
2000).

4.5 Drained deformations

In some cases the analysis of consolidation is not really necessary because the duration of the consolidation process is short compared to the
time scale of the problem considered. This can be investigated by evaluating the expression c¢,t/h?, where h is the average drainage length, and
t is a characteristic time. When the value of this parameter is large compared to 1, the consolidation process will be finished after a time ¢,
and consolidation may be disregarded. In such cases the behaviour of the soil is said to be fully drained. No excess pore pressures need to be
considered for the analysis of the behaviour of the soil. Problems for which consolidation is so fast that it can be neglected are for instance the
building of an embankment or a foundation on a sandy subsoil, provided that the smallest dimension of the structure, which determines the
drainage length, is not more than say a few meters.
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4.6 Undrained deformations

Quite another class of problems is concerned with the rapid loading of a soil of low permeability (a clay layer). Then it may be that there is
hardly any movement of the fluid, and the consolidation process can be simplified in the following way. The basic equation involving the time
scale is the storage equation (4.27),

Oe op

i r . 4.4
aatJrSpat V-q, (4.45)

If this equation is integrated over a short time interval At one obtains

At

aegg + Sppo = — V- qdt, (4.46)
0

where £y and py denote the volume strain and the pore pressure immediately after application of the load. The term in the right hand side
represents the net outward flow, over a time interval At. When the permeability is very small, and the time step At is also very small, this term
will be very small, and may be neglected. It follows that

ae ae

e . 4.4
Po Sp nCy + (a —n)Cs (447)

This expression enables to eliminate the pore pressure from the other equations, such as the equations of equilibrium (4.42). This gives

Oe

(Ku + %G)% + Gv2um + fz =0,
0

(Ku + %G)a—; + GV, + f, =0, (4.48)
0

(Ku + %G)i + GV2UZ + fz =0,

where
o? a?
K,=K+—=K
“ +Sp +an—|—(a—n)C’S’

(4.49)

the undrained compression modulus.
It should be noted that these equations are completely equivalent to the equations of equilibrium for an elastic material, the only difference
being that the compression modulus K has been replaced by K.
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Combination of eqs. (4.37) and (4.38) with (4.47) leads to the following relations between the total stresses and the displacements
Opz = —(Ku — 2G)e — 2Ge,y, Opy = —2Gegy, Opz = —2Gey,,
oyy = —(Ky — %G)E — 2Geyy, oy = —2Gey., Oyz = —2Geys, (4.50)
0. = —(Ky — 2G)e — 2Ge.., Orp = —2GE s, Oy = —2Ge .

These equations also correspond precisely to the standard relations between stresses and displacements from the classical theory of elasticity,
again with the exception that K must be replaced by K,. It may be concluded that the total stresses and the displacements are determined
by the equations of the theory of elasticity, except that the compression modulus K must be replaced by K,. The shear modulus G remains
unaffected. This type of approach is called an undrained analysis.

If the fluid and the particles are incompressible the storativity of the pore space S, is zero, see equation (4.28). In that case the undrained
compression modulus is infinitely large, which is in agreement with the physical basis of the original consolidation theory. If the particles and
the fluid are incompressible, and the loading process is very fast, no drainage can occur. In that case the soil must indeed be incompressible. In
an undrained analysis the material behaves with a shear modulus equal to the drained shear modulus, but with a compression modulus that is
practically infinite. In terms of shear modulus and Poisson’s ratio, one may say that Poisson’s ratio v is (almost) equal to 0.5 when the soil is
undrained.

As an example one may consider the case of a rigid circular foundation plate on a semi-infinite elastic porous material, loaded by a total
load P. According to the theory of elasticity (Timoshenko & Goodier, 1970) the settlement of the plate is

P(1—1?)

- 7 4.51
w 5D (4.51)

where D is the diameter of the plate. This is the settlement if there were no pore pressures, or when all the pore pressures have been dissipated.
In terms of the shear modulus G and Poisson’s ratio v this formula may be written as
P(1-v)
Woo = ————
2GD
This is the settlement after the consolidation process has been completed. At the moment of loading the material reacts as if v = %, so that the
immediate settlement is

(4.52)

P
= — 4
This shows that the ratio of the immediate settlement to the final settlement is
1
Y o_ - (4.54)

woo  2(L=v)’

Thus the immediate settlement is about 50 % of the final settlement, or more, depending upon the value of Poisson’s ratio in drained conditions.
The consolidation process will account for the remaining part of the settlement, which will be less than 50 %.
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4.7 Cryer’s problem

A good, and still relatively simple, example of a three-dimensional problem
of consolidation is the case of a massive sphere, subjected to an all round
pressure at its outer boundary, with drainage to a layer of filter material
around the sphere, see Figure 4.3.

The solution of this problem has been given by Cryer (1963) for the
case of an incompressible fluid and incompressible solid particles. Here
the general case will be considered, which will is only slightly more com-
plicated.

Figure 4.3: Spherical sample. Basic equations

Using a spherical coordinate R, which is appropriate for this problem with
spherical symmetry, the storage equation (4.27) can be written as

Oe op k ,0%p 2 0p
VI N L (i 4.55
oo v 9% =5 (ore T Rar) (4.59)
where it has been assumed that the permeability is constant.
The volume strain € is related to the radial displacement u by
ou 2u
=—+ —. 4.56
TR TR (4.56)
The second basic equation is the equation of radial equilibrium, which can be expressed as
JORR | ORR — OTT
2 =0 4.57
oR 7T R ’ (4.57)

where orr and opr are the total stresses in radial and tangential direction. The total stresses can be separated into the effective stresses and
the pore pressure by the equations

ORR = ORp + ap, (4.58)

orrT = 0l + ap. (4.59)



Arnold Verruijt, Soil Dynamics : 4. THEORY OF CONSOLIDATION 80
Using these relations the equation of equilibrium can be written as
9okr Orr — OTT dp
9 28 _ 4.
R 7 +a R 0 (4.60)
Using equation (4.56) and the stress-strain-relations
/ 2 du
9 u
Opp = —(K — gG)E — QGE, (462)
the equation of equilibrium can be expressed in terms of the volume strain as
Oe Op
K+4iG) = =a-=. 4.
( +3G)8R T (4.63)
In these equations K is the compression modulus of the porous medium in fully drained conditions, and G is its shear modulus.
Boundary conditions
The problem is further defined by the boundary conditions
op
R=0: —==0, 4.64
3R (4.64)
=0 : u=0, (4.65)
R=a:p=0, (4.66)
0, ift<O,
R—G,.O'RR—{CI7 if > 0. (467)

The first boundary condition expresses that there is no flow in the center of the sphere, and the second boundary condition expresses that there
can be no radial displacement at the center. The third boundary condition states that the excess pore pressure at the outer boundary of the
sphere is zero, assuming perfect drainage. The fourth boundary describes the radial loading at the sphere’s circumference. The radius of the

sphere is denoted by a.
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Initial response

At the instant of loading there will be a response of the sample, which can be determined by considering the sample to be elastic, with a modified

compression modulus K, see equation (4.49),
2

@
K,=K+ —, (4.68)
Sp
This leads to a solution in which the state of stress is homogenous, with all normal stresses being equal to the load ¢q. The initial pore pressure

then is
aq

—_ 4.
a?+ KS, (4.69)

The initial volume change is

q qSp
= M = = —-—= ———————N 4
t=0:e=c0=3 = 2 gs, (4.70)

It may be noted that in the case of an incompressible fluid and incompressible particles Cy = Cs = 0, and o = 1. In that case pg = ¢ and
€9 = 0, indicating that in this case there is no initial volume change, and the initial pore pressure is equal to the radial load.

Solution of the problem

The problem is solved using the Laplace transform. For the pore pressure this is defined as

D= / p exp(—st) dt, (4.71)
0

where s is the Laplace transform parameter.
The transformed basic equations can easily be solved, involving four integration constants, which can be determined using the boundary
conditions (4.64) — (4.67). The final expression for the Laplace transform of the pore pressure is found to be

_ gmfBa? sinh(Aa) — (a/R) sinh(AR) (4.72)
P= ac(l+ KS,/a?) [1 + m(Xa)?]sinh(Aa) — (Aa) cosh(Aa)’ '
where
M\ = pBs/c, (4.73)
and the following additional parameters have been used
k(K + G K+iG)(1+ KS,/a?
o= FEX5G) 5 2y k16, m= ETaQUEES/a7 (4.74)

- 4G
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The coefficient ¢ is the usual coefficient of consolidation. In the case of an incompressible fluid and an incompressible solid particles (the case
considered by Cryer, 1963) the Biot coefficient a = 1, and the pore space storativity S, = 0. It then follows that 3 =1 and m = (K + %G)/ZLG.
Of particular interest is the pore pressure in the center of the sphere, at R = 0. If this is denoted by p., its Laplace transform is

_ qmpBa® sinh(Aa) — Aa (4.75)
Pe = ac(l+ KS,/a?) [1+m(Xa)?]sinh(Aa) — (Aa) cosh(Aa)’ '
It may be appropriate at this stage to verify the initial condition (4.69), using the fundamental property of the Laplace transform
tlin%p = lim sp. (4.76)
With equation (4.72) this gives
q
= 4.77
PO A1+ KS,ja?) (477)
This is in agreement with equation (4.69), thus confirming the derivations.
Inverse Laplace transformation
Inverse Laplace transformation of equation (4.75) gives, using Heaviside’s inversion theorem,
Pe Qmi sing; — & exp(—&2ct/Ba?), (4.78)
Po = mé; cos&; + (2m — 1) sin&; J
where the coefficients {; are the positive roots of the equation
(1- mff) sing; — & cos¢; = 0. (4.79)

This solution agrees with the solution obtained by Cryer (1963) for the case of an incompressible fluid and incompressible particles.

Results

Figure 4.4 shows the results for three values of Poisson’s ratio, assuming that the pore fluid and the particles are incompressible. It is interesting
to note that for all values of v < % the pore pressure in the center of the sphere initially increases before it is ultimately reduced to zero. This
is caused by the drainage, which starts at the outer shell of the sphere, and which produces a tendency for shrinkage of that outer shell. This
leads to an additional compressive stress on the practically incompressible core of the sphere, so that an additional pore pressure is generated.
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Pe/Po

() N H DLttt : : Ll : : Dol : : L 2 : DLttt
0.0001 0.001 0.01 0.1 1.0 10.0
ct/a?

Figure 4.4: Pore pressure in the center.

The effect can be be considered as a consequence of the practically immediate transmission of static stresses, and the gradual progress of the
diffusive process of groundwater flow. A similar effect was obtained by Mandel (1953) for the problem of a clay sample compressed between two
rigid plates, with lateral drainage. The effect is usually called the Mandel-Cryer effect. It has been confirmed experimentally by Gibson et al.
(1963) and Verruijt (1965).

4.8 Uncoupled consolidation

In general the system of equations of three-dimensional consolidation involves solving the storage equation together with the three equations of
equilibrium, simultaneously, because these equations are coupled. This may be a formidable task, and it seems worthwhile to try to simplify
this procedure. It would be very convenient, for instance, if it could be shown that in the storage equation

Oe dp k
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the first term can be expressed as

Oe dp
—=C—= 4.81
ot ot’ (4.81)
where C' is some constant, because then the equation reduces to the form
Op k
C+S,)==V-(—V 4.82
(aC+ 850 = V- (== V). (482)

which is the classical diffusion equation, for which many analytical solutions are available. The system of equations is then uncoupled, in the
sense that first the pore pressure can be determined from equation (4.82), and then later the deformation problem can be solved using the
equations of equilibrium, in which then the gradient of the pore pressure acts as a known body force.

Constant isotropic total stress

There are two possibilities for uncoupling to be realized. The first possibility is obtained by first noting that for an isotropic material the volume
strain ¢ is a function of the isotropic effective stress o’,
! ! !
o = W. (4.83)

For a linear material the relation may be written as
e =—Cpo, (4.84)

where C), is the compressibility of the porous material, the inverse of its compression modulus, C,,, = 1/K, and the minus sign is needed because
of the different sign conventions used for stresses and strains. The effective stress is the difference between total stress and pore pressure (taking
into account Biot’s coefficient), and thus one may write

e =—Cp(o — ap), (4.85)
Differentiating this with respect to time gives
Oe do Op
= =—C,— Cp—. 4.86
at ot T (4.86)

If it is now assumed, as a first approximation, that isotropic total stress is constant in time, then there indeed appears to be a relation of the
type (4.81), with
C = aC,y,. (4.87)

The differential equation now is, with (4.82)
op k
2
V. \V4 4.
(a*Ch + Sp) 5t (% D), (4.88)



Arnold Verruijt, Soil Dynamics : 4. THEORY OF CONSOLIDATION 85

which is indeed a diffusion equation. This simplifying assumption was first suggested by Rendulic (1936). That the isotropic total stress may be
constant in certain cases is not unrealistic. In many cases consolidation takes place while the loading of the soil remains constant, and although
there may be a certain redistribution of stress, it may well be assumed that the changes in total stress will be small. A proof is impossible to give,
however, and it is also difficult to say under what conditions the approximation is acceptable. Various solutions of coupled three-dimensional
problems have been obtained, and in many cases a certain difference with the uncoupled solution has been found. Sometimes there is even a
very pronounced difference in behaviour for small values of the time, in the sense that sometimes the pore pressures initially show a certain
increase, before they dissipate. This is the Mandel-Cryer effect, see the previous section, which is a typical consequence of the coupling effect.
When the pore pressures at the boundary start to dissipate the local deformation may lead to an immediate effect in other parts of the soil
body, and this may lead to an additional pore pressure. In the long run the pore pressures always dissipate, however, and the difference with
the uncoupled solution then is often not important. Therefore an uncoupled analysis may be a good first approximation, if it is realized that
local errors may occur, especially for short values of time.

Horizontally confined deformations

Another important class of problems in which an uncoupled analysis is justified is the case where it can be assumed that the horizontal
deformations will be negligible, and the vertical total stress remains constant. In the case of a soil layer of large horizontal extent, loaded by
a constant surface load, this may be an acceptable set of assumptions. If the horizontal deformations are set equal to zero, it follows that the
volume strain is equal to the vertical strain,

€ =¢,,. (4.89)

For a linear elastic material the vertical strain can be related to the vertical effective stress by the formula

€pp = —My0 (4.90)

zz?

where m,, is the vertical compressibility of a laterally confined soil sample. Using the effective stress principle this now gives

€2 = —My(0,, — ap), (4.91)
and therefore 5 5 5
€ OZZ p
= - = 4.92
T TR (4.92)
Substitution into the storage equation (4.80) gives
Op 00, k
(®m, + SP)E = omy—; + V- (V—wVp). (4.93)
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This equation is indeed of the form of a diffusion coefficient if the vertical total stress is constant. It may be concluded that in the case of zero
lateral deformation and constant vertical total stress the consolidation equations are uncoupled. If the medium is homogeneous, the coefficient
k/v. is constant in space, and then the differential equation reduces to the form

0
a—f = ¢, V?p, (4.94)
where V2 is Laplace’s operator,
0 0 0
2 _
v Ox? + 0y? * 022’ (4.95)
and ¢, is the consolidation coefficient,
k
Cy = (4.96)

(®my + Sp) Y

An equation of the form (4.94) was first derived by Terzaghi (1925), for the one-dimensional case of flow and deformation in the vertical
direction only, as occurs in a confined comprssion test in the laboratory, or in the consolidation of an extensive clay layer in the field, loaded by
a uniform surcharge. It was also derived by Jacob (1940), using somewhat different notations, for the case of a compressible aquifer of thickness
H, transmissivity T, and storativity S. The consolidation coefficient then can be written as ¢, = T'/S.

In the next section a solution of the differential equation will be presented, for Terzaghi’s problem.

4.9 Terzaghi’s problem

The problem first solved by Terzaghi (1925) is that of a layer of thickness 2h, which is loaded at time ¢ = 0 by a load of constant magnitude gq. The
upper and lower boundaries of the soil layer are fully drained, so that along these

o boundaries the pore pressure p remains zero.

ViLVLLL LIVl T The differential equation for this case is the fully one-dimensional form of

equation (4.94),

|

—

dp 9?p
= =cCy=—- 4.97
o~ o2 (4.97)
Because at the moment of loading there can not yet have been any fluid loss from
Figure 4.5: Terzaghi’s problem. the soil, it follows from equation (4.93) that the initial pore pressure is
t=0: p=npo il (4.98)

- a?my, + S, ¢
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If the fluid and the solid particles are incompressible a = 1 and S, = 0, so that then py = ¢, as Terzaghi considered.
The boundary conditions are
z=0:p=0, (4.99)

z=2h : p=0. (4.100)

Solution

The solution of the problem can be obtained by using the mathematical tools supplied by the theory of partial differential equations, for instance
the method of separation of variables (see e.g. Wylie, 1960), or, even more conveniently, by the Laplace transform method (see e.g. Churchill,
1972, or Appendix A). The Laplace transform of the pore pressure is defined as

D= / p exp(—st) dt, (4.101)
0

where s is a positive parameter. The transformed differential equation is, using the initial condition (4.98
d*p
dz2

The partial differential equation has now been reduced to an ordinary differential equation. The solution satisfying the boundary conditions is

P _ 1 cosh[(h— 2)\/s/cy)
Po 5 scosh[i/s/cs (4.103)

The inverse transform of this expression can be obtained by the complex inversion integral (Churchill, 1972), or in a more simple, although less
rigorous way, by application of Heaviside’s expansion theorem (Appendix A). This gives, after some elementary mathematical operations,

Sp—Po = Cy (4102)

© 2
o T Cyt

2 _ 4;{(2]”_1 cos((2j ~ 1) T2 expl (27 - )2 T ) (1.104)

This is the analytical solution of the problem. It can be found in many textbooks on theoretical soil mechanics, and also in many textbooks on
the theory of heat conduction, as that is governed by the same equations. In the early soil mechanics literature the solution was restricted to the
case of incompressible fluid and solids. The only difference with the present solution, in which both the fluid and the solids may be compressible,
is in the value of the consolidation coefficient, and in the value of the initial pore pressure py.

Because the solution has been derived here by a method that is mathematically perhaps not completely rigorous (Heaviside’s expansion
theorem, strictly speaking, applies only to a function consisting of the quotient of two polynomials), it is advisable to check whether the solution
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z/h indeed satisfies all requirements. That it indeed satisfies the
differential equation (4.97) can be demonstrated rather easily,
because each term satisfies this equation. It can also directly be
seen that it satisfies the boundary conditions (4.99) and (4.100)
because for z = 0 and for z = 2h the function cos(...) is zero.
It is not so easy to verify that the initial condition (4.98) is
also satisfied. The simplest method to verify this is to write a
: A N computer program that calculates values of the infinite series,
NSETUURIE OO RSIED NS O and then to show that for any value of z and for very small
- ) values of ¢ the value is indeed 1. It will be observed that this
requires a very large number of terms. If ¢ is exactly zero, it
will even been found that the series does not converge.

The solution (4.104) is shown graphically in figure 4.6, for
increasing values of ¢,t/h?. The number of terms was chosen
such that the argument of the exponential function was less than
-20. This means that all terms containing a factor exp(—20), or

0O — 05 5 - I p/Po0 smaller, are disregarded. The figure also shows that the solution
’ satisfies the boundary conditions, and the initial condition. It
Figure 4.6: Analytical solution of Terzaghi’s problem. does not show, of course, that it is the correct solution. That

can only been shown by analytical means, as presented above.

Settlement

The progress of the settlement in time can be obtained from the solution (4.104) by noting that the strain is determined by the effective stress,
€= —myo,, = —my(o.. — ap). (4.105)

The settlement is the integral of this strain over the height of the sample,

2h 2h
w = —/ edz = 2myhg — amv/ pdz. (4.106)
0 0

The first term in the right hand side is the final settlement, which will be reached when the pore pressures have been completely dissipated.
This value will be denoted by we,
Weo = 2my,hg. (4.107)
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Immediately after the application of the load ¢ the pore pressure is equal to pg, see equation (4.98). This means that the immediate settlement,
at the moment of loading, is
wo = 2my,h(q — app). (4.108)

In order to describe the settlement as a function of time it is most convenient to introduce the degree of consolidation U, defined as

w — Wo

U= (4.109)

Weo — WQ

This quantity will always vary between 0 (at the moment of loading) and 1 (after consolidation has finished). In this case, using the expressions
given above, it is found to be related to the pore pressures by

1 [P py—p
U=— dz. 4.110
2h 0 Po ( )

Using the solution (4.104) for the pore pressure distribution the final expression for the degree of consolidation as a function of time is

0

0.1
cvt/h2

Figure 4.7: Degree of consolidation.

exp[—(2j — 1)2 = &2, (4.111)
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For t — oo this is indeed 1. For ¢t = 0 it is 0, because then the terms in the infinite series add up to 72/8. A graphical representation of the
degree of consolidation as a function of time is shown in figure 4.7.
Theoretically speaking the consolidation phenomenon is finished if ¢ — oco. For all practical purposes it can be considered as finished when

the argument of the exponential function in the first term of the series is about 4 or 5. This will be the case when

cyt

W ~~ 2. (4.112)
This is a very useful formula, because it enables to estimate the duration of the consolidation process. It also enables to evaluate the influence
of the various parameters on the consolidation process. If the permeability is twice as large, consolidation will take half as long. If the drainage
length is reduced by a factor 2, the duration of the consolidation process is reduced by a factor 4. This explains the usefulness of improving the
drainage in order to accelerate consolidation. In engineering practice the consolidation process is sometimes accelerated by installing vertical
drains. In a thick clay deposit this may be very effective, because it reduces the drainage length from the thickness of the layer to the distance of
the drains. As the consolidation is proportional to the square of the drainage length, this may be extremely effective in reducing the consolidation
time, and thus accelerating the subsidence due to the construction of an embankment.

Problems

4.1 It is known from Laplace transform theory that an approximation for small values of the time ¢ can often be obtained by taking the
transformation parameter s very large. Apply this theorem to the solution of the one-dimensional problem, equation (4.103), by assuming that
s is very large, and then determining the inverse transform from a table of Laplace transforms.

4.2 Apply the same theorem to the solution of the problem of radial consolidation of a massive sphere, by taking s very large in the solution
(4.72), and then determining the inverse transform.



Chapter 5

DYNAMICS OF POROUS MEDIA

In this chapter the basic equations for the dynamics of a porous medium are presented. They were first derived by De Josselin de Jong (1956)
and Biot (1956). These equations can be considered to be the extension of the classical theory of consolidation or poroelasticity to the dynamic
case. This chapter will be restricted to the linearized equations, and the applications will be mainly restricted to the one-dimensional case of
propagation of plane waves. The basic equations will be derived, and analytical and numerical solutions will be presented.

5.1 Basic differential equations

In this first section the basic differential equations of the dynamics of a porous medium will be presented. A porous medium is supposed to be a
medium consisting of a solid material with a continuous system of small, interconnected, pores, which are filled with a fluid, for instance water
or oil. The fluid may contain some gas bubbles, causing it to be much more compressible than a homogenous liquid.

5.1.1 Conservation of mass

The first basic equation is the equation of conservation of mass of the pore fluid, see equation (4.17),

a(n
ney) + V- (npsv) =0, (5.1)
ot
where n is the porosity, ps is the density of the pore fluid, and v is the velocity of the pore fluid, defined as the average velocity of the fluid
particles. The density is supposed to be a function of the fluid pressure, see equation (4.18),
dps

p rrCr, (52)

where C is the compressibility of the fluid (perhaps including the compression of gas bubbles in the fluid). With (5.2) equation (5.1) becomes

on op B
o + anE + V- (nv) =0, (5.3)

where a term expressing the product of the fluid velocity and the pressure gradient has been disregarded, assuming that both are small quantities,
so that the product is of second order.

91
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The equation of conservation of mass of the solid particles is, see equation (4.20),
a[(l — n)ps]
ot

where p; is the density of the particle material, and w is the velocity of the solids, defined as the average velocity of the solid particles. The
density of the particles is supposed to be governed by the isotropic total stress o and the pore pressure p, as expressed by equation (4.21),

dps  psCs 0o Op

+V-[(1=n)psw] =0. (5.4)

£ 5.5
ot l—n(ﬁt at)’ (5:5)
where C; is the compressibility of the particle material. With (5.5) equation (5.4) becomes
on do ap
- sl—= V(11— =0, 5.6
ot O (g ~ng) TV vl (5.6)
where again a term expressing the product of a velocity and a gradient of stress or pressure has been disregarded.
Elimination of the terms dn/dt from equations (5.3) and (5.6) gives
dp
V-w+V-[nv—-w)|+n(Cs—Cs)= +C— 0. (5.7)
ot ot
It may be noted that the term V - w can also be written as de/0t, where ¢ is the volume strain,
e=V-u (5.8)
Furthermore, the isotropic total stress can be decomposed into the isotropic effective stress and the pore pressure, o = ¢’ + ap, where « is
Biot’s coeflicient, and the isotropic effective stress can be related to the volume strain according to d¢/d0t = —C,, 00’ /0t, where C,, is the
compressibility of the porous medium. It follows that equation (5.7) can also be written as
85 op
+S,—=-V- 5.9
8t P at q? ( )
where, as before, « =1 — Cs/Cy,, Sy is the storativity of the pore space,
Sp =nCs + (a —n)Cs, (5.10)
and q is the specific discharge vector,
q=n(v—w). (5.11)

Equation (5.9) was also given in the previous chapter, and denoted as the storage equation, see equation (4.27).
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5.1.2 Conservation of momentum

A second set of basic equations is provided by the equations of conservation of momentum, or the equations of motion. This must be formulated
both for the fluid and the particles. The simplest form is to first consider conservation of momentum of the material as a whole, fluid plus
particles. The equations are, in the three coordinate directions,

004y 00yy 00, vy +a ) Owy
- - - =npf—o- —N)pPs—,
or oy 0z o T
00yy  Ooyy 00y Ovy Owy
_ _ _ = 2 4 (1= ), D 5.12
or oy 0. g Ty (5.12)
00y, 0oy, 00, ov, +a ) ow,
- - - =n —N)Ps—a,
or oy 92 Py P~
where the minus signs in the left hand side are a consequence of the convention that compressive stresses are considered as positive.
Because the total stresses can be decomposed as 0;; = agj + apd;;, these equations can also be written as
dal, 0oy, 9o, Op 0v, Owy
_ _ - L2 Vi — —° 1— qi”,
or oy 0. Cox g Ty
oo’ do! 0o’ Op v ow
_my  ZPyy  ZTzy YD Y 1— s—2, 5.13
ge oy 0 Yoy iy tAomeTy (5.13)

/ / /
7aazz o 803;2 _ 8022 — oz

9r oy 9z  “89: Py

dp ov, ow,

In the equations of conservation of momentum of the components (fluid or solids) the interaction between the two components due to friction
must be taken into account. The equations for conservation of momentum of the fluid are assumed to be

dp n’u B Ov, (v — wy)

. T(”r wy) W arve +Tnpy ot )
dp n*u v (v, —w,)

oy T(Uy wy) = ”PféTty + T”Pf#a (5.14)
6p TL2/.L (Uz wz)

where 7 is a tortuosity factor, describing the added mass due to the tortuosity of the flow path, u is the viscosity of the pore fluid, and x is
the permeability of the porous medium. The tortuosity terms have been included to account for a possible additional force to move the fluid
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through the tortuous path between the particles. It may be noted that care has been taken that the equations contain Darcy’s law as a special
case, when the accelerations are negligible. Actually, in the absence of acceleration terms, equations (5.14) reduce to the quasi-static case

a=——Vp, (5.15)
i

where q is the specific discharge, defined as
q=n(v—w). (5.16)

Equation (5.15) is Darcy’s law, in the absence of body forces, such as gravity.

It should also be noted that in equations (5.14) all interaction terms are expressed in terms of the velocity of the fluid with respect to the
solids. When the fluid and the solid have equal velocities these terms vanish.

The equations of conservation of momentum of the solids can be obtained by subtracting equations (5.14) from equations (5.13). This gives

aalxx aa”ilw aa,lzz ap HZM aww a(vw - wa:)
or oy 0z (ar=m) ox + K (Ve = we) = (1 =n)ps ot Tnes ot ’
do, do, do’, dp n’p Ow (v, —w,)
C90zy  OO0yy 00z _ _(1_ y y y
p By o (. —m) 9y + - (vy —wy) = (1 —n)ps 5~ T"Ps T , (5.17)
aaész 80’;2 aU,/zz dp nzﬂ dw, 8(1}2 —w;)
Tor Oy 0e T Mpp T (T we) = (mme T ey T

It can easily be verified that addition of the equations (5.14) and (5.17) yields the equations of total conservation of the mixture (5.13).

5.1.3 Constitutive equations

The effective stresses determine the deformations of the soil. As a first approximation the effective stresses are now supposed to be related to
the strains by the generalized form of Hooke’s law. For an isotropic material these relations are, see also equations (4.38),

ohy = —(K — 2G)e — 2Geyy,, 0y = —2Geyy, ol = —2Ge,.,
oy, = —(K — 2G)e —2Gey,, o0, =—2Gey., o0, =—2CGey,, (5.18)
o, =—(K - 2G)e — 2Ge.., ol = —2Ge.q, ol, = —2Ge.y,

where K and G are the elastic coefficients of the material, the compression modulus and the shear modulus, respectively.
Even though this assumption must be considered as a poor representation of the mechanical behaviour of soils, it is essential to note that
the governing stress parameter is the effective stress. More complicated stress-strain-relations can be formulated, involving time (to represent



Arnold Verruijt, Soil Dynamics : 5. DYNAMICS OF POROUS MEDIA 95

creep) and stress history (to represent irreversible plastic deformations). These should all be expressed in terms of the effective stress, however,
and should not involve the fluid pressure p, even though the pressure in the fluid will generate an equal stress in the solid particles, which are
completely surrounded by the pore fluid.

Equations (5.14), (5.17), (5.18) and (5.9) together form a system of partial differential equations, from which the basic variables, the
displacements, the stresses, and the pore pressure must be determined. One of the two sets of equations of balance of momentum can of course
be replaced by the total balance equations (5.13).

It is often considered convenient to consider the relative velocity v — w as a basic variable, rather than the fluid velocity v, because the
relative velocity governs the interaction between the fluid and the solids. In soil mechanics, and in hydrology, it is common practice to express
the equations in terms of the particle velocity w and the specific discharge, defined as q = n(v — w).

5.2 Propagation of plane waves

Because of the complexity of the general system of equations established in the previous section, the much more simple one-dimensional case
will be considered in this section. This will enable to study the propagation of plane waves, in a single direction, the x-direction.
From the general system of equations the following equations can be obtained for the one-dimensional case.

— 4+ 5= =- 5.19
o Pt or (5.19)
oo’ ow
— = ——, 5.20
LY Ox ( )
Ov Oow oo’ Op
— 4+ (1l=—n)ps—=—"F7"——a—. 5.21
gy TS e = g T Y, (5.21)
ov (v —w) dp n’p
— ——F=—n——-—(v - 5.22
"PI gt ey ot "o K (v—w), (5:22)
In these equations m,, is the one-dimensional compressibility of the porous medium,
my = —— (5.23)
YK+ 16 '

These are the basic equations for the propagation of plane waves in a porous medium, if this is composed of a soft soil, saturated with
a compressible fluid. It is useful to realize that eq. (5.19) expresses mass conservation of the fluid and the soil particles, i.e. total mass
conservation, eq. (5.20) is the stress-strain relation of the soil skeleton, eq. (5.21) expresses conservation of total momentum, and eq. (5.22)
expresses conservation of momentum of the pore fluid, the generalization of Darcy’s law to the dynamic case.
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5.3 Special cases

The general equations (5.19) — (5.22) include some interesting special cases, which will be discussed in this section. It will appear later that
these special cases are also characteristic for the waves possible in porous media.

5.3.1 Undrained waves

A special case that can be imagined is when the fluid and the solids move together, w = v. This case can be considered to occur when the
permeability is very small, see eq. (5.22). The last term in that equation will then dominate, indicating that v = w. From egs. (5.19) and (5.20)

one then obtains, using the relation o = o’ + ap,
am,

= 5.24

p a2mv + Sp g ( )
S,

r_ P 5.25

7 a?my, + S, g ( )

For a soft saturated soil, when C; and C, are small compared to m,, so that S, < m, and a ~ 1, these equations express that the total stress
is carried mainly by the fluid, and that the solid particles carry very little of the total load.

The two remaining equations now are
ow do

K, + 3G - 5.26
ow 0o
= = 5.27
P 5 T (5.27)
where K, is the undrained compression modulus,
a? a?
K,=K+—=K , 5.28
* Sp * nCy + (a —n)Cs (5:28)
and p is the mass density of the soil as a whole,
p=nps+(1—n)ps. (5.29)

In equation (5.28) K is the compression modulus of the dry soil. This equation is in agreement with equation (4.49), derived for undrained
deformations in the static case.
Egs. (5.26) and (5.27) are the familiar standard equations for wave propagation. They admit solutions of the form

K.+ 3G

o w = fi(x + ct), (5.30)
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o+ —3—w=for —ct), (5.31)

K, + %G 1 o?
V= \/ oy Py + (@~ )] (532)

This shows that the wave velocity in the undrained case is determined by the classical formula (5.32), with the elastic modulus usually being
very large, determined by the undrained condition, and with the density being the total density of the soil.

It should be noted that this simplified solution applies only if the boundary conditions do not violate the assumed relationships. Thus, for
instance, a boundary where the fluid and the soil are moving at the same rate satisfies the assumption v = w, and at a free boundary, where
p = ¢’ = 0, the relations (5.24) and (5.25) can be satisfied. When there are other types of boundary conditions the approximation considered
here may not be produced.

For a completely saturated soft soil the value of the undrained modulus is approximately K, + %G ~ 1/nCy, see equation (5.28), because the
pore fluid is the stiffest component in this case. The value of C} is about Cy = 0.5 x 107 m?/N. With n = 0.40 and p = 2000 kg/m® one then
obtains ¢ = 1600 m/s. Such wave velocities are indeed often observed in saturated soft soils. In stiffer soils, or saturated rock, the propagation
velocity may be considerably larger, up to 2000 m/s or higher.

where the wave velocity c¢ in this case is

5.3.2 Rigid solid matrix

Another special case that can be imagined is when the solid matrix is very stiff, as in the case of a very stiff porous rock. As a first approximation,
the velocity of the solids w can now be assumed to vanish, w = 0.

In this case it seems most appropriate to disregard the stress-strain relation (5.20) and the total momentum balance equation (5.21), as this
involves the momentum balance of the solid matrix, which are irrelevant when the solid matrix is assumed to be rigid. Thus the two remaining
equations are

ov dp
—=-5= 5.33
"ox T Mot (5.33)

v dp nu
1 e 7Y 5.34
(L+7)rs ot or K ° (5.34)
These are two equations in the basic variables for this special case, the pore pressure p and the fluid velocity v.
The behaviour of the material can be investigated by considering the propagation of harmonic waves

v =vexpli(Ar — wt)] = Vexplir(x — ct)], (5.35)

p = pexpli(Az — wt)] = pexplir(z — ct)], (5.36)
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where X is the wave number, w is the frequency of the wave, and ¢ is the wave propagation velocity, ¢ = w/A. The frequency w is real, the wave
number A may be complex.
Substitution of egs. (5.35) and (5.36) into the equations (5.33) and (5.34) gives, after combination of the two equations,

1 S,
(A HD0sSpry g M g2y (5.37)
n (14 71)prwr
The behaviour of the solution is determined by the value of the factor
B— i S (5.38)

1+ 7)prwr (14 T)wk’

where g is the gravity constant (g ~ 10 m/s?), and k is the hydraulic conductivity. For normal soil or rock the permeability is about 10~% m/s,
or less, and thus the value of the parameter B is very large, except for extremely rapid fluctuations, say w > 10° s~'. In normal civil engineering
practice this may be excluded. Then the (imaginary) second term in the left hand side of eq. (5.38) dominates, and the value of ¢ is determined
by

P =i 5.39
- (5.39)
Because ¢ = w/\ it now follows that
S
A2 = 222 (5.40)
K
or
B N [Spwp N [ Spwprg

This means that the wave is strongly damped. As an example consider a wave with frequency w = 1 s7!, in a soil with porosity n = 0.40,
permeability & = 10~* m/s, completely saturated with water, so that S, = nCy = 0.2 x 1079 m?/N. In this case one obtains : ®(\) =1 m~L.
This means that the wave will be attenuated very rapidly, in a few meters. If the frequency is higher the attenuation is even stronger. Also, if
the permeability is smaller than the (relatively high) value considered here, the wave will be damped in the immediate vicinity of the source.
Propagation of this wave over a considerable distance will occur only if the frequency is very low, or the permeability is very high.

In the case of extremely high frequencies the influence of the permeability can be disregarded, and the second term in the left hand side of
eq. (5.37) can be disregarded. The wave velocity then is

e =\/n/[(1+7)psS,] = \/1/1(L+ 7)o Cy). (5.42)

Apart from the factor (1 + 7) this is simply the propagation velocity of a compression wave in the fluid. As mentioned above, waves of this type
will be strongly damped by the friction with the solids.
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For a completely saturated soil the value of S, is the product of the porosity and the compressibility of pure water, which is about
S, = nCy = 0.2 x 1079 m?/N. With p; = 1000 kg/m? one then obtains ¢ ~ 1400 m/s, which is somewhat slower than the undrained wave
considered before.

5.4 Analytical solution

Solutions of the basic differential equations can be obtained using Fourier Analysis. Probably the most simple approach is to start by considering
the effect of a general periodic pore pressure at the free end of a very long column, see Figure 5.1.

Figure 5.1: Column with periodic pressure at its end.

5.4.1 Periodic solution

In order to derive a basic periodic solution it is assumed that

p= Pexpli(\x + wt)], (5.43)
o' = Sexpli(Axr + wt)], (5.44)
v = Vexpli(\z + wt))], (5.45)
w =W expli(A\z + wt))], (5.46)

where w is a given frequency, and A is an unknown, possibly complex number, characterizing the wave length corresponding to the frequency w.
Substitution of these expressions into the basic equations (5.19) — (5.22) gives

nAV + (o — n)AW = —S,wP, (5.47)

mywS = =AW, (5.48)
nprwV + (1 —n)pswW = —AS — alP, (5.49)
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;2 2
(1+7m)npswV — mnppwW = —nAP + mHMV - WHMW (5.50)

These are four equations with four unknowns. It is mathematically more convenient, however, to reduce them to two equations with two
unknowns.
Elimination of S and V from equations (5.47), (5.48) and (5.49) gives

(Spprw? — aX?)m,wP — [(p — aps)mew® — N2]AW =0, (5.51)

where p is the total density,
p=nps+ (1 —n)ps. (5.52)

Elimination of V from equations (5.47) and (5.50) gives
[(1+7)S,ppw? — iSpw% — NP+ [(a—n+aT)prw — i%]/\w = 0. (5.53)

Dimensionless parameters d¢, ds, a, b, v are introduced such that

dy = ps/p, (5.54)
ds = ps/p, (5.55)

_ e ng
a= Pl (5.56)
b=S,/m., (5.57)
A = pmyw?y?. (5.58)

The propagation speed c of plane waves in a medium with compressibility m, and density p is defined by

1
2
= 5.59
A=, (559)
so that
A =wy/e. (5.60)

It should be noted that the definition of the parameter a includes not only the hydraulic conductivity k, but also the frequency w. This has
been done to simplify the further analysis. It may also be noted that the definitions of dy, ds and p imply that nd; + (1 — n)ds = 1.
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Using the dimensionless parameters introduced above, the equations (5.51) and (5.53) can be written as
(dsb — ay?)em, P — (1 — ady — y*)yW =0, (5.61)

[(1+7)dsb —iadsb — ny*lem, P+ [(a — n + at)dy — icadf]yW = 0. (5.62)

The homogeneous system of equations (5.61) and (5.62) has a non-zero solution only if the determinant of the system of equations is zero. This
leads to an equation of the form

Ayt +By* +C =0, (5.63)
with
A=n, (5.64)
B = —n(1 —n)ds — [(a —n)? + a®7]ds — (1 +7)dsb+iads(a® +b), (5.65)
C =1[(1—-n)ds + 7|dsb— iadysb. (5.66)

The quadratic equation (5.63) has two complex roots, which means that there are four possible values of -, which are written as
71 =E(q +ir), 2 ==x(@+ir), 71 >0, 12>0, (5.67)

where it has been assumed that r; > 0 and ro > 0, for definiteness.
Because A = wy/c it follows that the four possible values of A are

A =x(q1 +irw/e, Ao =%(q2 +irg)w/c, 11 >0, r9 > 0. (5.68)

Restriction will be made to the semi-infinite medium x > 0. Then only the roots with a positive imaginary part apply, because only these lead
to a finite limit at infinity. This means that the general solutions for the pore pressure and the velocity of the solids can be written as

p = A, exp[—(w/c)(r1 — iq1)x] exp(iwt) + By exp[—(w/c)(r2 — ige)x] exp(iwt), (5.69)

w = A, exp[—(w/c)(r1 + ig1)x] exp(iwt) + By, exp[—(w/c)(ra — ig2)x] exp(iwt), (5.70)

where, in order to satisfy equation (5.61),

ﬂ _ (dfb_ a'}/%)cmv (5.71)
A, (I—ads —99)n’

By _ (dsb—ang)ems (5.72)
B, (1—adf—93)7
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The general solutions for the effective stress o’ and the velocity of the fluid can be written as
o' = Asexp|—(w/c)(r1 —iq1)x] exp(iwt) + Bs exp[—(w/c)(r2 — ige)z] exp(iwt), (5.73)

v = A, exp[—(w/c)(r1 —iq1)x] exp(iwt) + B, exp[—(w/c)(ra — igz)x] exp(iwt). (5.74)
In order to satisfy equations (5.48) and (5.47) the coefficients of these equations must be

As 1
= — 5.75
Ay C"'nv7 ( )
Bs Y2
_ 5.76
B. = em (5.76)
A, a-n (1—ads—~+3)b
v J 5.77
Ay n n(dgb —avi) ’ (5:77)
B, a-n (1—ads—~3)b

= — — . 5.78
By, n Tl(dfb — Oz’y%) ( )
Equations (5.77) and (5.78) give the ratio of the amplitudes of the displacements of the fluid and the solids, in the two waves.
The boundary conditions for a plane wave applied at the end x = 0 of a semi-infinite column of soil, with the wave being applied both to
the soil and the fluid, as in the experiments of Van der Grinten (1987) and Smeulders (1992), are, because o = ¢’ 4+ ap,

z=0 : o = (1 —a)pyexp(ivt), (5.79)
x=0 : p=pgexp(iwt). (5.80)
From these conditions it follows, with (5.73) and (5.69), that
As + Bs = (1 — a)po, (5.81)
Ap =+ Bp = Do- (582)
With (5.75) and (5.76) equation (5.81) gives
Y1Aw + 72By = —(1 — a)emypo. (5.83)

Using equations (5.71) and (5.72) this can be transformed into a relation between A, and B,

dsb— arf dsb— a3
l—adf =97 " 1—ads—3

B, = —(1 — a)po. (5.84)
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The two (complex) constants A, and B, may now be solved from equations (5.82) and (5.84). The result is

Ay ldpb—3+ (1 —a)(1 —ady)](1 — ady —7)

— , 5.85

Po (712 - 'Y%)(Oé - a2df - bdf) ( )

By _ ldsb—ri+(1—-a)(a—adp))(l —ads —73) (5.86)
Po (7 —3)(a — a?dy — bdy)

Substitution of these expressions for A, and B, into equation (5.69) finalizes the solution for the pore pressure.

5.4.2 Response to a sinusoidal load

The solution for a sinusoidal load can be constructed from the general periodic solution considered in the previous section by formulating the
boundary condition as
x=0 : p=pgsin(wt) = poS[exp(iwt)]. (5.87)
The solution for this case can immediately be obtained from the solution in the previous section, by taking the imaginary part. Thus, with
(5.69),
p = {4, exp[—(w/c)(r1 — iq1)z] exp(iwt) + By exp[—(w/c)(ra — ig2)z] exp(iwt)}, (5.88)

or

p = R{A,} exp(—wriz/c) sinjw(qiz/c + t)] + {4, } exp(—wriz/c) coslw(qiz/c + t)] +
R{B,} exp(—wraz/c) sinfw(gaz/c +t)] + S{B, } exp(—wrax/c) cos[w(gax/c + t)]. (5.89)

It can be observed from this expression that for z — oo the pore pressure tends towards zero, because 71 > 0 and 5 > 0. The expected wave
character of the solution requires that ¢g; < 0 and g2 < 0, but this will automatically be satisfied if r; > 0 and r, > 0. This property of the
solution has been verified by numerical computations of the coefficients for various combinations of the basic parameters.

It can easily be verified numerically that the boundary condition at x = 0 is always satisfied, because it appears that R{A,} + R{B,} = po
and S{4,} + S${B,} =0.

In a similar way the response to a load in the form of a cosine function, cos(wt), can be derived, by formulating the boundary condition as

x=0 : p=pgcos(wt) = poR[exp(iwt)]. (5.90)

In this case the solution is
p = R{A, exp[—(w/c)(r1 —ig1)z]exp(iwt) + By exp[—(w/c)(r2 — igz)x] exp(iwt)}, (5.91)
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or

p=R{A,} exp(—wriz/c) cosjw(qrz/c + t)] — S{A4,} exp(—wriz/c) sinfw(qrz/c + t)] +
R{Bp} exp(—wraz/c) cos|w(gaz/c +t)] — I{B,} exp(—wraz/c) sinfw(gaz/c + t)]. (5.92)

This completes the solution for the pore pressures produced by a sinusoidal load.
In the limit w — 0 the solution for the steady state problem with the boundary conditions

z=0 : o = (1—a)po, z=0 : p=po, (5.93)
is obtained as
o' =(1—-a)p,  p=po (5.94)

The velocities of the constituents are zero in this case
v=w=0. (5.95)

It can easily be verified that this is indeed a solution of the basic equations (5.19) — (5.22), and that it satisfies the boundary conditions (5.93).
It should be noted that the vansihing of the velocities does not mean that the deformations and the displacements also vanish. Actually, the
effective stress (5.94) implies a uniform deformation.

5.4.3 Approximation of the solution

For real soils it can be expected that the product of hydraulic conductivity and frequency, kw, will be rather small, and often very small. This
means that the parameter a, defined in equation (5.56) as a = ng/kw, will be very large. In that case the coefficients A, B and C, see equations
(5.64) — (5.66), may be approximated by

A=n, B =iads(a® +b), C = —iadyb. (5.96)

The general solution of equation (5.63),
Ay 4+ By* +C =0, (5.97)

is
B
72:—ﬂ{1i\/1—4140/32}, (5.98)

or, because 4AC/B? < 1,
B
72 = —ﬂ{1 +[1 - 24C/B%}, (5.99)
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The two possible solutions for 42 now are

C b
2
— = ) 5.100
M="BT 21 (5.100)
B ads(a? + b) (a?m, + Sp)
2 aay Pf9 v P
__b__ — _ 5.101
"2 A ‘ n ’ kpm,w ( )
This last expression may also be written as
2
2  C
=— 5.102
Y2 Zva, ( )

where ¢ is the wave speed in a medium with compressibility m, and density p, see equation (5.59), and ¢, is the one-dimensional consolidation

coefficient of the porous medium, defined as
k

Cv = — 7 5 o
prg(a®m, + Sp)

(5.103)

see equation (4.96).
It now follows that the possible solutions for - are, taking the roots with a negative real part, as only these apply in a semi-infinite beam

x>0,
[ b
= — . .104
71 2 +b (5.104)

2

c

Y2 = —(1—14) (5.105)

20w
The propagation speed ¢ of waves in a porous medium is usually of the order of magnitude of 1000 m/s, and the consolidation coefficient ¢,
is usually of the order of magnitude of 1 m?/s, or much less, indicating that the parameter ¢?/c,w usually is very large. This may also be
concluded from the original form of the parameter, which is g/kw (and some relative quantities). Because g = 10 m/s? and the permeability
can be assumed to be not larger than k = 102 m/s, for very coarse sand, it follows that the parameter g/kw will be large, except for extremely
high frequencies.

It may also be noted that the solution (5.69) contains a factor exp(—wrz/c), where r is the imaginary part of the dimensionless root v. Now
that it has been found that this can be written as r = 1/c?/2¢,w it follows that the second wave contains a factor exp(—xz+/w/2¢,). This means
that this wave is noticeable only for a distance of about

L~ 4./2¢c,/w. (5.106)

For most soils, in which ¢, is small compared to 1 m? /s, this will be a small distance, indicating that the second wave ususally will influence only
the immediate vicinity of the disturbance. The exception is the case of a very stiff material, of high permeability, for which the consolidation
coefficient may be large.
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It is also interesting to substitute the results (5.104) or (5.105) into equations (5.77) and (5.78), which define the relationship between the
two velocities. Using the assumption, characterizing the approximation considered here that a = 72 >> 1, it then follows that

~ 1, (5.107)

v
Y=
w

~ _
~

v
w n Ny,

= a-n., S } (5.108)
This means that in the first wave the fluid and the solids move together, and that in the second wave the fluid moves out of phase with the
solids. This explains why the second wave is so strongly damped. The existence of these two waves, and their characteristic properties, were
first noted by De Josselin de Jong (1958) and Biot (1958).

The first wave, in which the soil particles and the pore fluid move at the same velocity, was already considered in section 5.3.1. The order of
magnitude of the velocity of this wave was found to be about 1600 m/s for soft soil, and somewhat larger for stiff soils or rock, up to 2000 m/s.

The second wave, characterized by the ratio (5.108) for the two velocities, can be further analyzed by considering the behaviour of the basic
differential equations for this ratio. Actually, equations (5.19) and (5.22) now reduce to

ow Op
[1*0&+Sp/mv]%:5pa, (5109)
ow n Op
From these two equations the velocity of this wave can be obtained as
1—a+S5,/m, n
= . 5.111
2 [a—n—l—r—i—(l—i—r)SP/mv Sppy ( )
If &« =1 and 7 = 0 the storativity is S, = nCy, where Cy is the compressibility of the fluid. Equation (5.111) then reduces to
v 1
¢ = [ O/ (5.112)

1 —n+nCy¢/m," Cips’

The second factor is the velocity of a wave in the pure fluid. The first factor is smaller than 1, so that the velocity of the second wave is
somewhat smaller than the velocity of a wave in the fluid.

It may be noted that the solution for a material with incompressible constituents (incompressible particles and incompressible fluid) has
been considered by De Boer (2000). In this case the velocity of the first wave is infinitely large, and only the second wave remains.
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5.4.4 Numerical verification

In order to check the results of the preceding section, the exact results have been obtained by numerically calculating the values of 4, /A4,, and
B, /B, using equations (5.77) and (5.78), for a material having the properties listed in Table 5.1.

Symbol | Property Value
Ps Density of solids (kg/m?) 2650
Py Density of fluid (kg/m?) 1000
k Permeability (m/s) 0.001
n Porosity (-) 0.400
T Tortuosity (-) 0.000
! Biot coefficient (-) 1.000
My Compressibility of soil (m?/MN) 0.0002
Cy Compressibility of fluid (m?/MN) | 0.0005

s Compressibility of solids (m?/MN) | 0.000
w Frequency (1/s) 10

In this case (1 —n)/n =1.5, b= .5,/m, = 1. The values of the two roots y; and -, are found to be
v1 = —0.707106781 4 0.000000004 :

Yo = —22.439191923 + 22.394414404¢ :

Table 5.1: Example properties.

These values compare very well with the approximate results

Yo =: —22.416793 + 22.4167931

v = —0.7071068 : A,/A, =1,

Ay, /Ay = 0.999999981 — 0.0000125004,

B,/B,, = —4.000000019 — 0.0000125003.

. B,/B, = —4.

The exact results confirm the accuracy of the approximate values. In particular, they confirm that the first wave, in which the solids and the
fluid move at practically the same velocity, is only very slightly damped, and that the second wave, in which the solids and the fluid move in

opposite directions, is strongly damped.
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5.4.5 Response to a block wave

On the basis of the response to a single wave of the form sin(wt) or cos(wt), the response to a periodic wave of arbitrary shape can be generated,
using Fourier series expansion.

q A block wave, of period T, see Figure 5.2, can be represented by the Fourier
1 series
1 N 2 i sin(2nkt/T) (5.113)
. q - 2 T - k_ N .
k=1,3,5,
0 v
0 T 2T The response of a column of a porous material, with properties as given in
Figure 5.2: Block wave. Table 5.1, to a block wave of period T can be generated from the elementary

solution given in equation (5.89), using the Fourier series (5.113), provided that the
period of the block wave is large enough for the pore pressures to approach the static value p/pg after one half of the period.

The results can be produced by the program SHOCKWAVE. For a point at a distance of 0.2 m from the boundary the pore pressures are
shown in Figure 5.3, taking T'= 0.1 s. Two waves can be seen to have developed. It can be verified that the first wave, arriving at a distance
of 0.2 m after about 0.00009 s, is the undrained wave, in which the velocities of particles and fluid are equal. The propagation velocity of this
wave is given by equation (5.32). It now follows, using the data from Table 5.1, that ¢ = 2240 m/s. This rather large value is caused by the
large stiffness of the soil that has been assumed, in order to obtain that the second wave is clearly visible. The value of the velocity of the first
wave is in good agreement with the value observed in Figure 5.3 of about 2200 m/s. The second wave observed in this figure is the wave with
opposite velocities, for which the propagation velocity is found to be, with equation (5.112) and the data from Table 5.1, ¢; = 1120 m/s, which
is a factor 2 slower than the first wave. This is in good agreement with the results shown in Figure 5.3.

It can be verified that in the special (and unrealistic) case of an incompressible fluid only one wave, the wave in which the velocities of the
fluid and the solids move in opposite directions, can be observed. This is a highly damped wave. This case can be investigated by taking a very
small value for the compressibility C'y of the fluid, for instance a factor 1000 smaller than the value given in Table 5.1.

5.5 Numerical solution

For a numerical solution by finite differences it is convenient to rewrite the equations (5.19) — (5.22) in the following form,

_mpp yOv 1O g T 00 Op
il + (1 —=n)ps ] ot pr 0x  Kpy (v —w) (1 —n)ps { O +a8x}’ (5.114)
ow npy  Ov 1 90’ op
o T—nps 9t A —myps or T B (5.115)
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Figure 5.3: Shock wave in a porous medium - Analytical solution.

op  n v a—ndw
oo’ 1 ow
T (5.117)

When written in this form a numerical solution by finite differences can easily be developed, because new values for the variables v, w, p and o’
can be calculated successively from the four equations.

As an example the problem of propagation of an under water shock wave will be considered. At time ¢ = 0 all variables are assumed to be
zero, and at that time a shock wave hits the end x = 0, so that the boundary conditions are

=0 : p=q, (5.118)

r=0 : o =(1-a)g. (5.119)

The shock wave is supposed to act both in the total stress and in the pore water pressure. This means that the effective stress at the surface
remains zero. This situation can be considered to apply to a wave reaching the soil through a layer of water to the left of the boundary x = 0.
The numerical procedure now can be that new values for v are first calculated from eq. (5.114), then new values for w are calculated from
eq. (5.115), next new values for p are calculated from eq. (5.116), and finally new values for ¢’ are calculated from eq. (5.117). This completes
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the calculations in a time step. The same calculations can then be repeated for a new time step, and so the process can be solved in successive

time steps.
The main part of the program SHOCKWAVENUM (in C) that may be used to perform the calculations, is reproduced below.

NN=2000; N=4000;
RS=2650.0;RF=1000.0;P0OR0=0.4;PERM=0.001;GRAVITY=10.0;
SP=0.5%0.001%0.001*0.001*P0OR0;MV=0.2%0.001%0.001*0.001 ; TAU=0; ALPHA=1;
XX=1.0;DX=XX/NN;XP=0.2;RR=POR0*RF+(1.0-POR0)*RS;EE=1.0/ (MV+ALPHA*ALPHA*SP) ;
CC=sqrt (EE/RR) ;C2=sqrt ((1-ALPHA+SP/MV) *EF/ (RF* (ALPHA-PORO+TAU+ (1+TAU) *SP/MV) )) ;
if (C2>CC) CC=C2;TC=DX/CC;DT=0.4+TC;IP=XP/DX;
for (i=0;i<=N;i++) {V[i]=0.0;W[i]=0.0;P[i]=0.0;S[i]=0.0;F[i]=0.0;}
al=1.0+TAU*(1.0+PORO*RF/((1.0-POR0)*RS)) ;a2=1.0/(RF*DX) ;
a3=POR0O*GRAVITY/PERM;a4=TAU/ ((1.0-POR0)*RS*DX) ;
b1=POR0O*RF/ ((1.0-POR0)*RS) ;b2=1.0/ ((1.0-POR0O) *RS*DX) ;
c1=POR0/ (SP*DX) ; c2= (ALPHA-PORO) / (SP*DX) ;d1=1.0/ (MV*DX) ;
for (j=1;j<=N;j++)

{

if (j<20) P[0]=j*0.05;else P[0]=1.0;

for (i=1;i<=j;i++)

{
aa=-(a2*(P[i]-P[i-1])+a3*(V[i]-W[i])+ad*(S[i]-S[i-1]+ALPHA*P[i]-ALPHA*P[i-1]))/al;
V[i]l=V[i]l+aa*DT;W[i]l=W[i]-(bl*aa+b2*x(S[i]-S[i-1]+ALPHA*P[i]-ALPHA*P[i-1]))*DT;

}

for (i=1;i<j;i++)
{
P[i]l=P[i]-(c1*(V[i+1]-V[i])+c2*(W[i+1]1-W[i]))*DT;
S[i]=S[i]-d1*(W[i+1]1-W[i])*DT;
}
F[j1=P[IP];
}

The program applies to a soil column of 1000 mm length. The column is subdivided into 2000 elements of 0.5 mm length. The data describing
the problem are defined in the first 6 lines. They are in agreement with the data given in Table 5.1. The time step is determined such that
the fastest of the two waves will not lead to instabilities. The arrays P[i], S[il, V[il, W[i], F[i] must be defined so that they can store
values from i=0 to i=4000. The values of the array F[j] denote the relative pore pressure at a depth XP.

The results of the numerical calculation, shown in Figure 5.4, agree very well with the analytical results shown in Figure 5.3. As in the
analytical solution, it appears that two waves are generated in the column. The arrival time of the first wave corresponds with that of the
undrained wave, in which the soil particles move with the pore fluid. The second wave is typical of porous media in which the compressibility of
the fluid and of the solids have the same order of magnitude (Van der Grinten et al., 1987). In this wave the fluid particles move with respect
to the soil particles. This wave is strongly damped, because of the friction between the fluid and the solid particles. The effect of this wave can
only be observed near the surface (in the example this is at a depth of 200 mm). At large depths it has been dissipated.
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Figure 5.4: Shock wave in a porous medium - Numerical solution.

It may be noted that the high frequency oscillations observed in Figure 5.4 are a result of the numerical process. In the analytical solution
they do not appear. Actually, these fluctuations have been largely suppressed by approximating the step load at the boundary by a load that
gradually increases in steps of 5 % of the total load, in 20 very short time steps. If the load is applied in a single step the fluctuations are much
larger.

5.6 Conclusion

It has been seen in this chapter that in a saturated porous medium two compressive waves can be generated, one in which the particles and the
fluid move together, and one in which they move in opposite directions. As could be expected, this second wave is strongly damped, because of
the friction between the soil particles and the fluid in the small pores. Actually, it is not so easy to choose the data such that this second wave
is indeed observed. In a series of experiments at the University of Eindhoven, using a cemented porous medium, this was accomplished by Van
der Grinten (1987) and Smeulders (1992). The effect of the second wave could clearly be observed, in the vicinity of the point of application of
the load. In soft soils the effect can hardly be observed.

The second wave is so strongly damped because the movement of the water with respect to the soil particles generates such large frictional
forces. Because the factor kw/g is small for all normal saturated soils it can be concluded that in plane deformations, or in compression, these
soils under dynamic loading will behave in an undrained condition, which means that its Poisson’s ratio will be close to 0.5, if the material is
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treated as a whole, i.e. if it is considered as a material deforming by the action of the total stress conditions.

The situation is quite different for shear waves. Because pure shear does not involve any volumetric deformation, it follows that the fluid in
the pores does not affect the propagation of shear waves. The conclusion must be that for dynamic effects a saturated porous medium usually
can be considered as a soil in undrained conditions, with its compression modulus given by equation (4.49), K, = K + a?/S,, where K is the
compression modulus, and S, the storativity, see equation (4.28). Because for a saturated soft soil the compressibilities of the fluid and the
particles are very small, the soil is almost incompressible.



Chapter 6

CYLINDRICAL WAVES

In this chapter a number of cylindrically symmetric problems from the theory of elasticity are considered, both for the static case and the
dynamic case. These problems can be considered as first approximations for the analysis of the influence of a local disturbance in a very large
homogeneous elastic plate, or for the case of deformation of bodies bounded by very long cylindrical surfaces. Certain problems of this kind are

known as the expansion of cylindrical cavities.

6.1 Static problems

6.1.1 Basic equations

Figure 6.1 shows an element of material in a cylindrical coordinate system. If the radial coordinate is denoted by r, and the tangential coordinate

Orr + A0y

Ott

Figure 6.1: Element in circular coordinates.

by 6, then the area of the element is rdrdf. If it is assumed that the
displacement field is cylindrically symmetrical it may be assumed that there
are no shear stresses acting upon the element, and that the normal stresses
oy and oy are independent of the tangential coordinate #. The stresses
acting upon the element are indicated in the figure.

The only non-trivial equation of equilibrium now is the one in radial
direction,

do—rr Orr — Ott
+

=0. 1
dr T 0 (6.1)

The deformations are related to the stresses by Hooke’s law. If the body
considered is a thick plate, it may be assumed that the plate deforms in a
state of plane strain. In that case Hooke’s law states, in its inverse form,

Orr = Xe+ 20 &y, (6.2)
Ot = e + 2,u Etts (63)

113
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where e is the volume strain,

€= Epr + €4t (6.4)
and A and p are the elastic coefficients (Lamé constants),
vE
) 6.5
(I+v)(1-2v) (6.5)
E
The strains €, and €+ can be related to the radial displacement u by the relations
du
= —, 6.7
e = (6.7)
Ett = — (68)

Substitution of egs. (6.2) — (6.8) into (6.1) gives
d*uv  ldu wu
A+ 2 {— ,7_7}207 6.9
(A+2p) dr2+rdr r2 (6.9)
or
d®uv  ldu wu
dr?2  rdr r?
This is the basic differential equation for radially symmetric elastic deformations. It is remarkable that all terms appear to have a coefficient
(A + 2u), which means that the equation is independent of the elastic properties of the material. Hence, if the boundary conditions can all be
expressed in terms of the displacement u, then the solution will be independent of the elastic properties.
The stresses can be expressed into the radial displacement by substitution of equations (6.7) and (6.8) into (6.2) and (6.3). This gives

=0. (6.10)

du u
= 2u)— - 11
Orr (A+ M)dr+/\r’ (6.11)
u du

r dr
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6.1.2 General solution
The general solution of the differential equation (6.10) is
B

where A and B are integration constants, to be determined from the boundary conditions.
The general expression for the volume strain, corresponding to the solution (6.13) is

e =2A. (6.14)

It appears that the deformation field corresponding to the basic solution B/r is isochoric, i.e. of constant volume.
The stresses o, and o can be expressed as

B

B

Some examples will be given in the next section.

6.1.3 Examples

Example 1 : Cylinder under external pressure

Of the two basic solutions the solution with the coefficient B is singular in the origin. Thus for a massive cylinder, which includes the axis r = 0,
this solution must vanish, to prevent the stresses and displacements from becoming sin-
gular. If the boundary condition at the outer boundary of the cylinder is

rT=a . UTT‘ = 71)7 (617)

see Figure 6.2, then the two constants are

. p
A= eI (6.18)

B=0. (6.19)

. . The stresses now are, in the entire cylinder,
Figure 6.2: Cylinder under external pressure. Y
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Oprpr = 0tt = —P. (620)
The displacement field is

___ bpr
et (6.21)

Thus the stresses (and the strains) in the cylinder are homogeneous, and the displacement field is such that the radial displacement increases
linearly with the distance from the origin.

Example 2 : Hollow cylinder under external pressure
For a hollow cylinder under external pressure, see Figure 6.3, the boundary conditions are
r=a : o =0, (6.22)

r=>b: opn = —p, (6.23)

where it has been assumed that a < b.
In this case the constants A and B are found to be

A=— Pl (6.24)
o 2(A + p)(b2 — a2)’ '
Figure 6.3: Hollow cylind pa’t?
igure 6.3: Hollow cylinder. B=__Y" "~ ). 6.25
2p(b? — a2) (6.25)
The stresses now are 2/ )
1—a“/r
Opp = —P 1— a2/b23 (626)
1+ a?/r?
Ott = —P m» (6-27)

It can easily be seen that the expression (6.26) satisfies the boundary conditions (6.22) and (6.23).

A special case occurs when the outer boundary is located at infinity. This is the case of a very large plate with a small circular hole. In this
case b — oo. At infinity (r — oo) all stresses then approach the limiting value —p. At the boundary of the hole the radial stresses o, are zero,
but the tangential stress o at the boundary of the hole then is —2p. The multiplication factor 2 is called a stress concentration factor. This
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solution also applies to a plate under tension, of course. The only difference then is that p is negative. The stresses along the hole then are twice
as large as the stresses at infinity. If the material has a limited range in which it can withstand stresses, as most materials do, the material will
start to crack or yield at the boundary of the hole. More refined studies for other cases, such as a plate with an elliptical hole, have shown that

the stress concentration factor can be much larger than 2, for instance near the corner points of a square hole.

Example 3 : Cylinder with rigid inclusion

Figure 6.4: Cylinder with rigid inclusion.

The stresses now are

For a cylinder under external pressure, with a rigid circular inclusion, see Figure 6.4, the

boundary conditions are

r=a : ur =0,

r=>b: o =—Dp.
In this case the constants A and B are found to be
A=— P
2(A + p) + 2pa?/b?’

pa®

(A + ) + 2pa? /6>

B =
+2

2(\ + p) + 2pa®/r?
20\ + p) + 2pa® /b2’
2(A + p) — 2pa®/r?
2\ + p) 4 2pa? /b’

Oprp = —P

Ot = —p

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

Again the case of an infinite plate is of some special interest. In this case the radial stress is not zero at the boundary of the inclusion, of course.
Actually, the stresses at the boundary of the inclusion are

b A2
—00,T=a : Opp = —
, rr p)\+li7
A
b—oo,r=a : oy=-p

A+p

(6.34)

(6.35)
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One might suppose that the solutions for an infinite plate with a circular hole and for an infinite plate with a rigid circular inclusion would
become identical when the radius of the hole and the inclusion tends to zero. This is not the case, however. Apparently the special behaviour
near the boundary of the hole or the boundary of the inclusion can still be felt, even when the radius is infinitely small. Especially for the case of
a rigid inclusion this seems strange, because one would expect that the solution for this case approaches the solution for a homogeneous plate if
the radius of the inclusion tends towards zero. The explanation for this paradox is that the limiting cases should be approached more carefully.
Actually, the limiting case for a — 0 should be considered first for the integration constants A and B, see eqs. (6.30) and (6.31). These then
correctly reduce to the values given in (6.18) and (6.19). The procedure of first setting » = a and then taking a = 0in (6.32) and (6.33) leads
to a result differing from the one obtained by first setting @ = 0 and then letting r — 0.

Example 4 : Cavity expansion

A case of special interest is the expansion of a cylindrical cavity in an infinite body, see
Figure 6.5. In this case the boundary conditions are

r—o00 : op =0, (6.36)

r=a : op = —P. (6.37)

The constants A and B are found to be

A=0, (6.38)
Figure 6.5: Cavity expansion. a2
B=L2% (6.39)
2p
The stresses now are )
a
Orr P, (640)
r
2
a
r
The displacement field is
pa’
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The displacement at the boundary of the cavity is of particular interest,

a
Uy = 12’—“. (6.43)

If this displacement can be measured, the value of the shear modulus p can be obtained. This is the basis of the pressuremeter test, developed
by Ménard.
6.2 Dynamic problems

In the dynamic case the basic equilibrium equation (6.1) must be extended with an inertia term,

aarr Orr — Ott 82“
=p== 6.44
or + r Poe (6.44)
where p is the mass density of the material. Substitution of egs. (6.2) — (6.8) into this equation gives
o? 10 1 02
“ - Y (6.45)

i R

where ¢ is the propagation velocity of compression waves,
c= v (A+2u)/p. (6.46)

Equation (6.45) is the basic differential equation for cylindrically symmetric dynamic elastic deformations. For certain cases solutions of this
differential equation may be obtained by separation of variables or by the Laplace transform method.

6.2.1 Sinusoidal vibrations at the cavity boundary

As a first example the case of a sinusoidal variation of the displacements at the boundary of a cylindrical cavity in an infinite medium will be
considered. The boundary condition is supposed to be
r=a : u=ugsin(wt). (6.47)

where w is the frequency of the vibration.
The solution may be obtained by separation of variables. In this method it is assumed that the solution of the differential equation (6.45)
can be written as

u = Re{F(r) exp(iwt)}. (6.48)



Arnold Verruijt, Soil Dynamics : 6. CYLINDRICAL WAVES 120

Substitution into (6.45) shows that this is the case if the function F(r) satisfies the equation

2 2
d°F 1dF (w —1>F:0.

el 4
dr?2 7 dr (6.49)

2
The solution of this differential equation can be expressed in terms of Bessel functions (Abramowitz & Stegun, 1964). The general solution is
F = AJi(wr/c) + BYi(wr/c), (6.50)

where Ji(z) and Y7 (x) are the Bessel functions of the first and second kind, of order one, see Abramowitz & Stegun (1964).

In many problems of mathematical physics in an infinite region one of the two fundamental solutions can be excluded because of its behaviour
near infinity. In this case of cylindrical waves this is not so, because both fundamental solutions J;(z) and Y;(z) behave in about the same way
as x — 00. Therefore the condition at infinity has to be formulated in a more refined way, namely by specifying that at infinity the behaviour
of the solution must be such that it corresponds to an outgoing wave, and that waves originating at infinity and propagating in negative radial
direction are excluded. This is known as the radiation condition. In its original form it is due to Rayleigh (1894) and Lamb (1904).

At very large distances the Bessel functions Ji (z) and Y;(z) may be approximated by the asymptotic expansions

T — 00 -/ 2/mx cos(x + 1m) (6.51)
z— o0 : Yi(z)~ —/2/mx sin(z + im) (6.52)

This means that for very large values of r the radial displacement will be

r—o00 : uR Re[ﬁc/?mur{ —iB)expliw(t +r/c) + imi] + (A + iB) expliw(t — r/c) — %m]}} (6.53)

The first term in the right hand side represents a wave traveling from infinity towards the origin, whereas the second term represents an outgoing
wave, traveling towards infinity. This is the only acceptable term, and thus the radiation condition in this case requires that

A=iB. (6.54)

The solution for the function F(r) now is

F =iBJy(wr/c) + BYi(wr/c). (6.55)
The coefficient B must be determined from the condition at the inner boundary r = a, see eq. (6.47). The result is
Ji(wa/c) +iYi(wa/c)

B = —uo JE(wa/c) + Y3 (wa/c)

(6.56)
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Using this expression for the coefficient B the final solution for the displacement is

u _ J1 (wa/c)Jl (WT/C) + Yl(wa/c)yl(uﬂ"/C) sin(wt) _
g Ji(wa/c) + Y{(wa/c)

J1(wa/e)Yr(wr/c) — Yi(wa/c)Ji(wr/c)
Tlwaf) + VP (walo)

cos(wt). (6.57)

It can easily be verified that this solution satisfies the differential equation (6.44), because it consists of products of Bessel functions and circular
functions, and that it satisfies the boundary condition (6.47), because for r = a only the first term remains, and its coefficient reduces to 1. For
large values of the radial coordinate r the solution can be approximated by

u Ji(wa/c)\/2¢/mwr it — r/c) — L] Yi(wa/c)y/2¢/mwr oslw(t —r/c) — L. (6.58)

r—oo : — B Jt(wa/c) +Y{ (wa/c) ’

4

uwy  J2(wa/c) + Y2(wa/c) °

Because the time ¢ appears in this expression only in the form of the factor (¢t —r/c) it can be seen that the solution indeed satisfies the radiation
condition that at infinity only an outgoing wave remains.

One of the most important aspects of the solution (6.57),
which is especially clear from its approximation (6.58) for large
values of the radial coordinate r, is that the amplitude of the
vibrations tends towards zero for r — oo as the factor \/m
This is in contrast with the static case, in which the solution
tends towards zero at infinity as 1/r, which is much faster. This
1 means that dynamic effects are attenuated in space much slower
than static effects.

The amplitude of the solution is shown graphically in Fig-
ure 6.6, as a function of the distance r. The value of the pa-

rameter wa/c has been taken as 0.2. The figure indeed shows
1 T r/a that the amplitudes at great distances from the inner boundary
0 10 20 30 40 50 approach zero, but rather slowly. Even at a distance of 50 times
the radius of the cavity the amplitude of the wave is still about
10 % of the amplitude at the cavity boundary. In the static
case this would only be about 2 %.

|u/uol

Figure 6.6: Amplitude of wave.
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u/uo

The displacements in the wave, as a function of
the radial coordinate r, expressed as (r —a)/a, are
shown in Figure 6.7, for a value of time such that
sin(wt) = 1, for instance wt = /2.

The displacements have the character of a wave
traveling from the inner boundary towards infinity.
Again it can be observed that the reduction of the
maximum displacements with the radial distance
from the inner boundary is rather slow.

10

20

4;)\56

30

(r—a)/a

Figure 6.7: Radial displacement, wa/c = 0.2, wt/m = 0.5.

From the solution (6.57) the radial stress o, and the tangential stress oy can be determined, using equations (6.11) and (6.12). This gives

;—Wcz _ Z Jl(wa/c)ji; Ezg?zgi }122(&62//c3)1@r(wr/c) sin(wt) — g Jl(wa/dgg; //;); ;}%EZZCC))J f(wr/e) (), (6.59)

Z(Zi) _ ; (wa/c)JJle((ZZz; i Qg(az//cz)yf(wr/c) sin(wt) — g Ty (wa/c)jf%t(f://j)); ;;12 (((:Juc;//cc))Jf(wr/c) cos(at), (6.60)

o T (@) = (o) + =320 Jo(a) (6.61)
V(@) =io) + 2 PaYao) (6:62)

Ji(@) = D) + 5w Jola), (6.63)

Yi(x) = Yi(z) + %xYo(x). (6.64)

Here Jo(z) and Yp(z) are the Bessel functions of the first and second kind,

of order zero, see Abramowitz & Stegun (1964).
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orra/ 2o The radial stress o, is shown as a function of the
distance from the cavity, expressed as (r — a)/a,
in Figure 6.8, at a moment in time for which wt =
/2, and assuming that wa/c = 0.2 and v = 0.25.

It appears that the stresses tend to zero
much faster than the displacements, as a
result of the factor a/r in the expression
(6.59). In the elastostatic case the conver-
gence is even faster, of order a?/r?, see equation
(6.40).

00 o 20 30 - 0 =0 (r—a)/a Of particular interest is the radial stress at the

Figure 6.8: Radial stress, wa/c = 0.2, wt/m = 0.5, v = 0.25. inner boundary. If this is denoted by —pa,

r=a : op = —Ppo, (6.65)

the relation of this boundary pressure with the displacement ug of the boundary is found to be

2[LUO .
po = [F1(wa/c) sin(wt) + Fa(wa/c) cos(wt)], (6.66)
where
A+ 2p Ji(@)Jo(x) + Yi(z)Yo(z)
Fi(z)=1— 7 6.67
) TR V2@ (0:97
A+ 2u Ji(z)Yo(z) — Yi(z)Jo(2)

F = 6.68
) T B 1 ) (059

The expression for Fy(z) can be simplified using the relation for the Wronskian determinant (Abramowitz & Stegun, 1964, formula 9.1.16)

h@ﬂﬂ@—ﬂ@ﬂ&dz%? (6.69)
This gives
A +2p 1
Fo(x) = T JE(z)+ Yi(z)

(6.70)
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If the frequency w is very small, the static solution is recovered,
2
w—0: py= %. (6.71)

This is in agreement with the results obtained for cavity expansion in the static case, see eq. (6.43).

|ua/us]

Wi
/i

\\
. \\M__ _—
0 0.5 1 1.5 2 2.5

Figure 6.9: Dynamic amplification factor.

wa/c

The absolute value of the expression between square brackets in eq.
(6.66) gives the multiplication factor for the amplitude of the radial
pressure in case of a dynamic load of given displacement. Its inverse
represents the multiplication factor for the dynamic displacements for
a given pressure at the inner boundary,

Uudq 1

|Us| VFE(wa/c) + F2(wajc)

The dynamic amplification factor is shown in graphical form in
Figure 6.9, for various values of the Poisson ratio v. It appears from
the figure that for large frequencies the dynamic amplitude is very
small, especially for values of Poisson’s ratio approaching the incom-
pressible limit ¥ = 0.5. This means that then the response is very
stiff. This phenomenon is often observed in dynamics. The reason
for it is that it is very difficult to move the mass of the material in
a very short time interval (this is called inertia of the material). In
this case of cylindrically symmetric deformations the static response is
governed by the shear modulus p only, see eq. (6.43). In the dynamic

(6.72)

case, however, the other elastic parameter, Poisson’s ratio v or the compression modulus K, also influences the response, which indicates that
in the dynamic case the wave not only involves shear, but also compression. The solution of the problem also indicates that at large distances
from the inner boundary, where the disturbance is generated, the compression wave dominates, because the wave velocity at infinity is that of

a compression wave.

6.2.2 Equivalent spring and damping

It is convenient to write the relation (6.66) between the pressure pg at the cavity boundary r = a and the displacement ug of that boundary in

the form

2waLpg = {K sin(wt) + wC cos(wt)} ug, (6.73)

where L is the thickness of the plate, K is an equivalent spring stiffness and C is an equivalent damping, see also section 1.5.



Arnold Verruijt, Soil Dynamics : 6. CYLINDRICAL WAVES 125
The expressions for these quantities are, with (6.66), (6.67) and (6.70),
K
o = Filwao), (674
and
C 2
=2 ¢/wa (6.75)

Figure 6.10: Equivalent spring.

Cc/2n(A+2p)La

0 T 2 3 1
Figure 6.11: Equivalent Damping.

wa/c

wa/c

2r(A\+2u)Lajc 7 JE(wa/c) + YE(wa/c)

The use of an equivalent dynamics stiffness K and an equivalent dynamic
damping C'is often convenient in foundation engineering. It should be noted
that these parameters depend upon the frequency of the vibration.

The equivalent dynamic stiffness is shown, as a function of the dimension-
less frequency wa/c, in Figure 6.10. For small frequencies the spring constant
is practically equal to the static value, but for large frequencies the spring is
much more flexible, resulting in smaller values of the spring constant.

Actually, for very large frequencies the function F(z) may be approxi-
mated by a formula that may be derived by using asymptotic expansions for
the Bessel functions (Abramowitz & Stegun, 1964).

This leads to the approximation

K 17)\+2y

1: ~
wa/e > AL 4

(6.76)

Ifv> % this is negative, indicating that the force and the displacement are
out of phase, as confirmed in the figure for the case v = 0.4.

The value of the equivalent damping C' is shown in graphical form in Fig-
ure 6.11. For large values of the dimensionless frequency wa/c the damping
approaches the asymptotic value

2m(A +2p)La

wafec>1 : Cx
c

(6.77)
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6.3 Propagation of a shock wave

6.3.1 Solution by Laplace transform

Another interesting problem concerns a shock wave propagating from a cavity in an infinite medium. In this case the Laplace transform method
(Churchill, 1972) seems well suited to solve the problem. The Laplace transform of the displacement is defined by

u = / u exp(—st) dt, (6.78)
0

where s is the Laplace transform parameter, which is supposed to be sufficiently large so that all transforms exist.
Application of the Laplace transform to the differential equation (6.45) gives

d*u  ldu (52 1)@207 (6.79)

dr2 " rdr \2 2
where it has been assumed that the initial values of the displacement and the velocity are zero. The solution of the differential equation (6.79),
vanishing at infinity, is

u= AK,(sr/c), (6.80)

where K (x) is the modified Bessel function of the second kind, and of order one. The boundary condition is supposed to be that from time
t = 0 on a compressive stress p is acting inside the cavity,

r=a, t>0 : o, =—p. (6.81)

The condition for the transformed problem is

r=a : Op = = (6.82)
s

Using the boundary condition (6.79) and the expression for the radial stress in terms of the displacement,

ou U
rr = A+2u)— ) .
o A+ 'u)arJr)\r (6.83)

the integration constant A can be determined. The final solution of the transformed problem then is found to be

pa Ki(sr/c)
2us Ki(sa/c) + [(A +2p) /2p](sa/c) Ko(sa/c)’

u =

(6.84)
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The mathematical problem now remaining is to determine the inverse transform of this expression. This can be accomplished by using the
complex inversion integral (Churchill, 1972), but will not be elaborated further here, because of the mathematical complexities, see Miklowitz
(1978).

An approximate solution valid for small values of the time may be obtained by using the theorem (Churchill, 1972) that by assuming that
the Laplace transform parameter s is very large, the Laplace transform

a(s) = /0 () exp(—st) dt, (6.85)

practically contains contributions of w(t) only for very small values of t. If in equation (6.84) the parameter s is assumed to be very large, the
Bessel functions may be approximated by their asymptotic expansions,

safe>1 : Ko(sa/c) = +/mc/2sa exp(—sa/c), (6.86)
safe> 1 Ki(sa/e) = +/mc/2sa exp(—sa/c), (6.87)

The expression (6.84) then reduces to

T= (/\eriZCM)SQ \f exp|—s(r — a)/c]. (6.88)

The inverse Laplace transformation now is simple, with the result

7pct— r—a)]

H t— (r— .
T2 . [ct — (r —a)], (6.89)
where H(t — to) is Heaviside’s unit step function,
o 0, ift<t,
H(t —to) = { 1, ift>t. (6.90)

The approximate solution (6.89) indicates that for small values of time, i.e. shortly after the application of the shock, the response of the system

is comparable to that of a one dimensional system (a pile) in which a compression wave is generated. The factor m indicates that the

strength of the wave is decreasing in radial direction, as could be expected, because it spreads out over an ever growing radius. The approximate

solution also has the convenient, and expected, property that the displacements are zero if ¢t < (r — a), i.e. before the arrival of the wave.
Another approximation can be obtained by using the property of the Laplace transform that

lim w(t) = lim su(s), (6.91)

t—o0 s—0
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see e.g. Churchill (1972). Application of this theorem to equation (6.84) now gives

2
. _pa
tlirgo u(t) = 2 (6.92)

This is the static solution, see eq. (6.42). It appears that the dynamic solution indeed approaches the static solution for very large values of
time.

6.3.2 Solution by Fourier series

The problem of the propagation of a shock wave from a cylindrical cavity can also be solved, and perhaps in a simpler way, by determining the
response to a block wave of sufficiently long duration, considered as the summation of many sinusoidal variations.
A block wave, of period T, see Figure 6.12, can be represented by the Fourier series

2 = sin(27kt/T)
+ = > —— (6.93)
k=1,3,5,

The basic element of the solution by Fourier analysis is the
response of the medium to a sinusoidal variation of the radial
stress at the cavity boundary,

: r=a : op = —posin(wt). (6.94)

00 : : : : T — : — oT t The displacement of the boundary due to this load can be writ-
Figure 6.12: Block wave. ten as

r=a: : u= 222G (wa/c)sin(wt) + Ga(wa/c) cos(wt)], (6.95)

2p
where the functions G;(x) and Ga(z) are the inverse forms of the functions Fj(x) and Fy(x), defined in equations (6.67) and (6.70),

_ Fi(z)
Gi(z) = o)+ @) (6.96)
Golz) = (@) (6.97)

FR(n) + Fp(x)
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The expression for the radial displacement as a function of r and ¢ is, generalizing equation (6.57), and replacing the reference parameter ug by

poa/Qﬂa

2uu_ Ji(wa/c)Ji(wr/c) +Yi(wa/c)Yi(wr/c) J1(wa/e)Yy(wr/c) — Yi(wa/c)Jy (wr/c)

poa JE(wa/c) + Y (wa/c) Alwt) = JE(wa/c) + Y (wa/c) Blwt). (6.98)

where
A(wt) = G (wa/c) sin(wt) + Ga(wa/c) cos(wt), (6.99)
B(wt) = Gy(wa/c) cos(wt) — Ga(wa/c) sin(wt). (6.100)

The expression (6.93) consists of a constant load pp/2, the average pressure, and a number of sinusoidal loads, with amplitude 2po/km. The first
term gives rise to a solution of the form u = pga®/(ur), in agreement with the solution (6.42) for elastostatic cavity expansion. The other terms
lead to partial solutions of the form (6.98), with wt = 27kt/T, or w = 27k/T. The results of a Fourier series solution, taking 500 terms, are
shown in Figure 6.13.

2pu/pa The value of T has been chosen very large, so that ¢T'/a =
100, to ensure that in half a period of the block wave the
steady state solution will be reached. The other parameters
in the solution are Poisson’s ratio, and the distance from the
cavity for which the radial displacement is plotted. The figure
[ S SRR WSS S also shows, by dots, the solution for small values of time, as
— 5 : given by equation (6.89), and the steady state solution. The
: 5 5 : Fourier series solution appears to agree very well with these
approximations for small and large values of time. The shape
of the curve is also in agreement with a solution by Miklowitz
(1978), obtained using the Laplace transform and numerical

t/T integration.

0.1 0.2 0.3 0.4 0.5

Figure 6.13: Radial displacement, ¢T/a = 100, v =0, r/a = 2.

The expression for the radial stress o, as a function of r and ¢ caused by a single component of the Fourier series is, generalizing equation
(6.59), and replacing the reference parameter ug by poa/2u,

o a Ji(wa/c)J] (wr/c) + Yi(wa/)Y (wr/c)

Awt) = & Ji(wa/c)Y{ (wr/c) — Yi(wa/c)J{ (wr/c)

po T Jt (wa/c) + Y (wa/c) T Ji(wa/c) + Yi(wa/c) B(wt), (6.101)

where A(wt) and B(wt) are defined by equations (6.99) and (6.100).
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In this case the constant load term pg/2 in the

arr /Do Fourier series (6.93) gives rise to a solution of the

form o, = —poa®/(2r?), as given by the solution

1 ........................... .......................... .......................... .......................... ........................... (6.40) fOI_ elaStOStath CaVity expansion' The Other

5 5 5 5 terms lead to solutions of the form (6.101), taking

into account the amplitude 2pg/k7m, and writing
wt = 27kt T.

The results of a Fourier series solution for the
radial stress, taking 500 terms, are shown in Fig-
ure 6.14. The dots in the figure indicate the elas-
tostatic solution, that should be obtained for very
5 5 5 : large values of time. The solution indeed appears
0 ; 5 5 : t/T to approach this limit for large values of ¢/T.

0 0.1 0.2 0.3 0.4 0.5

Figure 6.14: Radial stress, ¢T'/a = 100, v = 0.25, r/a = 2.

6.4 Radial propagation of shear waves

For the analysis of the transmission of vertical forces from a foundation pile to the surrounding soil, it may be interesting to consider the propa-
gation of shear waves through the soil, in radial direction. If it is assumed that there are no vertical deformations in the layer, and that its only
mode of displacement is a vertical displacement w, which is a function of the radial distance r and the time ¢ only, the basic differential equation is

?w 10w 1 9%w
T Nl oz T rar —Eam (6.102)

where now c is the velocity of shear waves,

: c=/p/p. (6.103)

Equation (6.102) can be derived from the equation of conservation of momentum, in
vertical direction, of a ring of radius r, see Figure 6.15. This requires that

Figure 6.15: Shear stresses acting upon a ring.

o(2mrT) 0w

o~ 27rrpﬁ. (6.104)
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Using an appropriate form of Hooke’s law for this schematization,

T= ,uaa—i), (6.105)

to relate the shear stress 7 to the vertical displacement w, equation (6.102) is obtained. It should be noted that these equations are valid only
if the vibrating soil layer is not supported at its base. The only mechanism of stress transfer in this approximation is through the transmission
of shear stresses in radial direction.

6.4.1 Sinusoidal vibrations at the cavity boundary

As an example the case of a sinusoidal variation of the displacements at the boundary of a cylindrical cavity in an infinite medium may be
considered. The boundary condition is supposed to be
r=a : w= wysin(wt). (6.106)

where w is the frequency of the vibration.

As in the case of radial compression waves, considered in the previous section, the solution may be obtained by separation of variables. The
solution proceeds in very much the same way, except that the Bessel functions now are of order zero. The determination of the integration
constants again requires the radiation condition at infinity in order to eliminate the incoming wave. The final solution is

w  Jo(wa/e)Jy(wr/c) + Yo(wa/c)Yo(wr/c) Jo(wa/c)Yy(wr/c) — Yo(wa/c)Jo(wr/c)

— = in(wt) — t). 6.107
wo R(wafc) + Y2 (wa/) sin{et) R (wafc) + Y@ (wa/o eos{et) (6107
For large values of the radial coordinate r the solution can be approximated by
Ji vV 2 Y( v/ 2
P00 i s o(waje)y 2c/mor sinfw(t — r/c) + 7] o(wa/e)y 2c/mur coslw(t —r/c) + ] (6.108)

wo " T TE(wajc) + Y@ (wa/o) " R(wa/o) + Y2(wa/e)
Because the time ¢ appears in this expression only in the form of the factor (¢ —r/c) it can be seen that the solution indeed satisfies the radiation
condition that it represents an outgoing wave at infinity.

The shear stress 7 can be found from the relation (6.105). For the total force T, acting on a pile of length L, this gives

T = {K sin(wt) + wC cos(wt)} wo, (6.109)
where J J v v
2 Sl e o
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and
4L 1

¢ =00 Feara + Yetware)

(6.111)

These quantities can be considered as the equivalent dynamic spring and damping of the soil system, as acting upon the mass of the pile.

The equivalent spring and damping are shown in graphical form,

K/mpL as a function of the frequency w, in Figure 6.16 and Figure 6.17.
1.0 It appears from Figure 6.16 that for high frequencies the equiv-
— alent stiffness is
0.8
0-6 wa/e>1 : K ~mpul. (6.112)
04
0.2 This relation can also be obtained by an asymptotic expansion
of the general formula (6.110) for large values of the parameter
) 1 2 3 4 5 wa/c wa/c. For small frequencies, which correspond to the static
Figure 6.16: Equivalent spring. case, the equivalent spring stiffness is zero. This is due to the
circumstance that the circular plate then is not supported.
For large values of the frequency the equivalent damping can
Ce/2mpLa be approximated by
4
5 wa/c>1 : C=~2nuLa/c, (6.113)
9 which is a constant. It appears from Figure 6.17 that this ap-
\ proximation can be used for practically all values of the fre-
1 quency with reasonable accuracy. Only for very small frequen-
cies the damping is larger.
06 1 2 3 4 5 waje It may be noted that the approximations obtained above in-

Figure 6.17: Equivalent damping. dicate that in the analysis of the behaviour of foundation piles
the effect of the generation of shear waves due to the transmis-
sion of friction to the ground can be approximated, at least for

high frequencies, by a spring and a damping, with constant properties, as indicated by equations (6.112) and (6.113). It should also be noted
that these approximations cannot be used for low frequencies.
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Problems

6.1 Consider a thin-walled cylinder, of radius a and wall thickness d, with d < a. In the interior of the cylinder a pressure p is acting, the
outer boundary is free of stress. Determine the constants A and B, see eq. (6.13), for this case. Show that the tangential stress in the cylinder
is —pa/d, which is the well known formula for the stress in the wall of a cylindrical boiler.

6.2 Consider a thin circular plate, of thickness d and radius a. On the surface of the plate a uniform radial shear stress 7 is acting, in outward
direction. Modify the basic equation (6.9) to take this shear stress into account, and solve the modified differential equation. Calculate the
stress in the center of the plate.

6.3 TFigure 6.6 was prepared using the value 0.2 for the parameter wa/c. Construct a similar figure using a different value for this parameter,
for instance wa/c = 0.1, or wa/c = 1.



Chapter 7

SPHERICAL WAVES

In this chapter a number of spherically symmetric problems from the theory of elasticity are considered, especially the problem of the expansion
of a spherical cavity. This can be considered as a first approximation for the analysis of the influence of a local disturbance in an infinite
homogeneous elastic body. Both static and dynamic loading will be considered.

7.1 Static problems

7.1.1 Basic equations

Figure 7.1 shows an element of material in a spherical coordinate system. If the radial coordinate is denoted by r, the angle in the z, y-plane
by 6, and the angle with the vertical axis by 1, then the volume of the element is 72 dr df di cos(¢). It is assumed that the displacement

z

Trr + AUT’V'

T

Figure 7.1: Element in spherical coordinates.

field is spherically symmetrical, so that there are no shear stresses acting
upon the element, and the tangential stress o is independent of the orienta-
tion of the plane. The stresses acting upon the element are indicated in the
figure. The only non-trivial equation of equilibrium now is the one in radial
direction,

8U'rr + Q(Urr - Utt)
or r

The stresses can be related to the strains by Hooke’s law,

—0. (7.1)

Orr = e+ 20 €y (7.2)
Ot — e + 2/J Etty (73)

where e is the volume strain,
e =¢Ep + 2€tt7 (74)

134
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and A and p are the elastic coefficients (Lamé constants),

vE
A= ——————————— 7.5
(1+v)(1—2v)’ (7.5)
E
The strains €, and €;; can be related to the radial displacement u, by the relations
ou,
rr — & 7.7
£ o (7.7)
Uy
= —. 7.8
Ett ” (7.8)
The volume strain can now also be written as
. ou,  2u, (7.9)
T or r :
Substitution of egs. (7.2) - (7.9) into (7.1) gives
0? 20u 2
Y L —) (7.10)

a0 i
This is the basic differential equation for spherically symmetric elastic deformations. As in the case of cylindrical deformations the elastic
properties of the material do not appear in this equation. This means that if the boundary conditions can all be expressed in terms of the
displacement, the solution will be independent of the elastic properties.

7.1.2 General solution
The general solution of the differential equation (7.10) is
B
u:Ar+r—2, (7.11)

where A and B are integration constants, to be determined from the boundary conditions.
The general expression for the volume strain, corresponding to the solution (7.11) is

e=3A. (7.12)

Because the volume strain appears to be independent of the constant B it can be concluded that the deformation field corresponding to the
basic solution B/r? is isochoric, i.e. of constant volume. The deformation field corresponding to the other basic solution Ar appears to lead to
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a homogeneous volume strain, independent of the radial coordinate r. Thus the volume change is always homogeneous throughout the spherical
body.
The stresses o, and o can be expressed as

B
Orr = (3A+2p)A — dp—, (7.13)
B

Some examples will be given in the next section.

7.1.3 Examples

Example 1 : Sphere under external pressure

Of the two basic solutions the solution with the coefficient B is singular in the origin. Thus for a massive sphere, which includes the origin r = 0,
this solution must vanish, to prevent the stresses and displacements from becoming singular. If the boundary condition at the outer boundary
of the sphere is

r=a:o, = -, (7.15)
see Figure 7.2, then the two constants are
p
A= ——rmr—, 7.16
(BX+2u) (7.16)
B =0. (7.17)

The stresses now are, in the entire sphere,

Opr = 04t = —P. (7.18)
The displacement field is

pr

Figure 7.2: Sphere under external pressure. v= _m' (7.19)

The stresses (and the strains) in the sphere are homogeneous, and the displacement field is such that the radial displacement increases linearly
with the distance from the origin.
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Example 2 : Hollow sphere under external pressure

For a hollow sphere under external pressure, see Figure 7.3, the boundary conditions are

r=a : op =0, (7.20)

r=>b: o =-D, (7.21)

where it has been assumed that a < b.
In this case the constants A and B are found to be

UL (7.22)
T B P — ) |
Figure 7.3: Hollow sphere. pa’b?
g P = —) (7.23)
u(b* —a
The stresses now are 2y
1—a’/r

Opp = —D m, (724)

1+a®/(2r3
ta’/@r) (7.25)

i ey

It can easily be seen that the expression (7.24) satisfies the boundary conditions (7.20) and (7.21).

A special case occurs when the outer boundary is located at infinity. This is the case of a very large body with a small spherical hole. In
this case b — oo. At infinity (r — oo) all stresses then approach the limiting value —p. At the boundary of the hole the radial stresses o,.. are
zero, but the tangential stress oy at the boundary of the hole then is —1.5p. Thus the stress concentration factor in this case is 1.5.

Example 3 : Sphere with rigid inclusion

For a sphere under external pressure, with a rigid spherical inclusion, see Figure 7.4, the boundary conditions are
r=a : u, =0, (7.26)

r=»b: o =—p. (7.27)
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In this case the constants A and B are found to be

p
_ 2
A (BA + 2u) + 4pa® /b3’ (7.28)

B = . 2
(BA +2u) + 4pad /b3 (7.29)

The stresses now are

3A+2 4pa® /3
Oprpr = =P ( ha M +hpa /T ) (730)
(3A +2p) + 4pad /b3
Figure 7.4: Sphere with rigid inclusion. Ir 19 o1
O_tt — ( + ,LL) /’[’a’ /T (731)

(3)\ +2u) + 4pad /b3

Again the case of an infinite body is of some special interest. In this case the radial stress is not zero at the boundary of the inclusion, of course.
Actually, the stresses at the boundary of the inclusion are

A
a—oo,r=a: orrz—pg)\igz, (7.32)
3\
a—o0o,r=a: Utt:*pm- (7.33)

Again, as in the case of a cylindrical inclusion, the solution does not tend to the homogeneous stress state when the radius of the inclusion
becomes infinitely small.

Example 4 : Cavity expansion
An interesting problem is the case of expansion of a spherical cavity in an infinite body, see Figure 7.5. In this case the boundary conditions are
r—00 : op =0, (7.34)

r=a : o = —p. (7.35)

The constants A and B are now found to be
A=0, (7.36)
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3
pa

B=—. 7.37
m (7.37)

The stresses now are

3
a
Opp = —P ﬁ, (738)
3
a
Ot = P ﬁ (739)
Figure 7.5: Cavity expansion. ) )
The displacement field is
3
pa
= . A
U i (7.40)
Of special interest is the displacement at the boundary of the cavity,

pa
«=—. 7.41
ta = (7.41)

If this displacement can be measured, the value of the shear modulus p can be obtained.

It may be noted that in this case the volume change is zero, because the constant A is zero, see eq. (7.12). For soil mechanics practice this
implies that in a water-saturated linear elastic medium no pore water pressures will be generated.

An interesting aspect of the solution for this problem of cavity expansion is that for r — oo the displacements tend to zero as 1/r2, and the
stresses tend to zero as 1/r®. This means that the displacements, and especially the stresses, decrease very fast with the radial distance. At a
distance of 4 times the radius of the cavity, for instance, the stresses are a factor 64 times smaller than the stress at the boundary of the cavity,
or, in other words, the stresses have been reduced to a level of about 1.5 %. It will appear later that in the dynamic case this is quite different.

7.2 Dynamic problems

In the dynamic case the basic equilibrium equation (7.1) must be extended with an inertia term,

8UT’I‘ 2 o 82
n (o Oit) — ) ou
or r ot?

(7.42)
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Substitution of eqs. (7.2) - (7.8) into this equation gives
Pu  20u  2u 1 0%u

gu s s _ %Y 7.43
or? + ror 2 612) ot? ( )
where At
2 ATCH (7.44)
p

Equation (7.43) is the basic differential equation for spherically symmetric dynamic elastic deformations. The differential equation can be solved
by various methods, such as separation of variables or the Laplace transform method. In this way general types of boundary value problems
can be solved. It should be noted that the quantity c,, as defined by eq. (7.44), is the propagation velocity of compression waves in an elastic
medium. It should not come as a surpise that for spherically symmetric waves the characteristic velocity is the velocity of compression waves.

7.2.1 Propagation of waves

A simple method of solution for wave propagation problems has been given by Hopkins (1960). This solution can be obtained by observing that
the displacement field is irrotational, so that one may introduce a displacement potential ¢ such that

¢
= . 7.45
u=_ (7.45)
Substitution of (7.45) into (7.43) shows that ¢ must satisfy the equation
P 20% 209 1 0%¢
A s . 7.46
or3 + rdr?  r2or 2 Orot? (7.46)
This equation can be integrated once with respect to r, which gives
¢ 200 1 0%
ik A 7.47
or2  rdr k2 ot (7.47)
Equation (7.47) can also be written as
o2 1 62

or? % ot2
This is the standard form of the one-dimensional wave equation. The solution can immediately be written down as

ro = f(r —cpt) + g(r + cpt), (7.49)
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where f and g are arbitrary functions, to be determined from the boundary conditions. The solution (7.49) represents two waves, a diverging
and a converging one. Of special interest is the solution that travels in outward direction from a certain local disturbance,

réd = f(r —cpt). (7.50)
The corresponding displacement field is
Ldf f
=—-—=— - =. 7.51
rdr r? (7.51)

Some examples of solutions of particular problems using this general form of the solution, will be presented below.

7.2.2 Sinusoidal vibrations at the cavity boundary

As an example the case of sinusoidal variations of the displacements at the boundary of a spherical cavity will be elaborated. The boundary
condition is assumed to be
r=a: u=ugsin(wt), (7.52)

where w is the frequency of the variation. The other boundary is supposed to be at infinity.
The solution of the problem can be described by a single function f, as in (7.50). It can be expected that this function can be written as

f = Asin(wt — kr) + B cos(wt — kr), (7.53)
where A and B are constants, and k = w/c. The factor kr can also be written as 277 /A, where now X is the wave length. It appears that
k=2m/\ (7.54)
The radial displacement corresponding to the solution (7.53) is, with (7.51),
1 .
u=-—3 {(A = Bkr)sin(wt — kr) + (B + Akr) cos(wt — kr) }. (7.55)

The constants A and B can now be determined from the boundary condition (7.52). The result is

ka)sin(ka)

B 5 cos(ka) + (

A = —uga 1+ (ka)? ) (7.56)
B 5 sin(ka) — (ka) cos(ka)

B = —wa ¥ (ka)? . (7.57)
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Substitution of these values into (7.55) gives, after some elementary mathematical operations,

u a2

w 20T (ha)d {[1 + (ka)(kr)]sin[wt — k(r — a)] + k(r — a) cos[wt — k(r — a)] }. (7.58)

This solution can also be written in the standard form u

— = f(=) sin(wt — ), (7.59)

T
(') a

where f(r/a) is a dimensionless damping factor and v is a phase angle. It can be shown that

T a2 ka)?(r/a)?
1E) = (| (7.0
and
Y = ka(r_a) —arctan[—ka(r_a)/a ] (7.61)
1+ (ka)?(r/a)* '
The volume strain e can be obtained from the relation (7.9),
*M sinjwt — k(r — a)|] — (ka) cosjwt — k(r — a

€= iy ey St (= )] = (ka) coslt — K(r — )]} (7.62)

The radial stress o, can be obtained from eq. (7.2). This gives

4puga’®
r3[1 4 (ka)?

uo(ka)?
Orp = m{sin[wt—k(r—a)]—(ka) cos[wt—k(r—a)}}—

Tt ()] {[1+(ka)(kr)] sinjwt—k(r—a)]+ k(r—a) coslwt—k(r—a)] }. (7.63)

One of the most striking features of this solution is that at large distances from the cavity (i.e. for large values of r/a) the displacements and
the stresses are much larger than in the static case. Both the radial displacement and the radial stress are of the order O(1/r). This is in sharp
contrast with the static case, in which the displacement and the stress tend to zero much faster, with a factor 1/r3.

The static solution can be obtained from the dynamic solution by assuming that the frequency w is so small that ka and kr tend to zero.

The solutions then reduce to )

w—0: 1% = 7% sin(wt), (7.64)
4 2
w—0 : Opp = — fitod sin(wt). (7.65)

r3
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This is in agreement with the static solution, as expressed by eqgs. (7.38) and (7.40).
The relation between the pressure at the cavity boundary (p = —o,..) and the displacement of that boundary is, in the static case,
4
p =40 (7.66)

a

In engineering practice it is often convenient to describe the response of a linear elastic system by a spring constant, writing

u="L, (7.67)

Ce
where c. is the spring constant. It appears that in this case the equivalent spring constant is

_ A

; (7.68)

Ce

Thus the equivalent spring constant is proportional to the shear modulus of the material, and inversely proportional to the radius of the cavity.
The larger the cavity, the smaller the spring constant. A uniform pressure inside a large cavity results in a large displacement.

It is also interesting to investigate the behaviour of the pressure at the cavity boundary, in relation to the amplitude of the displacement
ug for the general dynamic case. If the pressure inside the cavity is again denoted by p, which is the opposite of the stress o, at the cavity
boundary (i.e. for » = a), one obtains, from eq. (7.63),

U a)? a)3
p= 4;; - 2 Lw)(l ik(k)a)Q)} sin(wt) + (Azuzu)(l ik(lza)Q) cos(wt) }. (7.69)

The coefficients of the trigonometric functions in (7.69) are now written as a; and as, respectively,

A+ 2u)( (ka)?

=1- T
“ ( du 1+ (k:a)Q)7 (7.70)
A+2u (ka)?
= . 7.71
a2 ( 4 )(1—|—(ka)2) ( )
The expression (7.69) can then also be written in the standard form
4
p= il {a1 sin(wt) 4+ ag cos(wt)} = % sin(wt + ), (7.72)
a d

where now ¢4 is the dynamic spring stiffness,

4
cd:;M\/ 2+ a3, (7.73)
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and v is the phase angle, defined by

tan = 2. (7.74)
a1
The dynamic spring constant ¢y and the phase angle 1) depend upon the frequency w through the parameter ka, which can also be written as
ka = wa/c, = w/wo, (7.75)

where now
Cp A+2u
Wwog = — = CE
a pa

(7.76)

This is a characteristic frequency of the system, depending upon ce/Ca
the ratio of the elastic stiffness and the mass density, and upon
the radius of the cavity. It has the form of the square root of
the ratio of an elastic stiffness and a mass. A characteristic
frequency of this type often exists in dynamic systems. W

The dynamic spring constant cg is shown, in the form of the 3
ratio ce/cq, in Figure 7.6, as a function of the dimensionless /\

frequency w/wg, or ka. This can also be interpreted as the
amplitude of the dynamic response of the displacement of the
cavity boundary to a periodic pressure of constant amplitude.
The response curves have been plotted for various values of the 1 0.0
Poisson ratio v, which determines the ratio (A + 2u)/4u. It
appears that the response tends to zero when the frequency is \6~
very high, but for a certain low frequency there is a form of 0
resonance, especially if Poisson’s ratio is large. The order of

magnitude of this resonance frequency is about wy. Figure 7.6: Dynamic response, amplitude.

0 1 2 3 1 5 w/wo
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The phase angle v is shown in graphical form in Figure 7.7, as a i
function of the frequency, and for various values of the Poisson
ratio v. It follows from the figure, but also from the formula
(7.74), that for large values of the frequency (that is for very
rapid vibrations), the phase angle tends towards 7/2, indicating
a very large amount of damping. /9\49\

In this case the damping cannot be the result of vis-
cous or hysteretic damping of the material, as these ef-
fects have not been included. The cause of the damping
must be the spreading of the energy over ever larger ar-
eas when the waves travel from the cavity. This form of
damping is called radiation damping. In engineering prac-
tice this is often one of the most important causes of damp- W
mg. 0

\\
\

0 1 2 3 1 5 w/wo

Figure 7.7: Dynamic response, phase angle.

7.3 Propagation of a shock wave

Another approach to problems of elastodynamics is by using the Laplace transform method. This seems especially suited for the analysis of the
propagation of a shock wave. This method will be used in this section to solve the problem of a shock wave propagated from a spherical cavity.
The problem is described by the equation of motion (7.43),

%y 20u  2u 1 9%u

—t-a =5 = 707
o2 ror 2 2 ot (7.77)
where, as before, ¢, is the propagation velocity of compression waves,
A+2
=22 (7.78)
p
The stresses can be related to the radial displacement by the equations
0

Orr = A+ 2p U (7.79)

or’
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Uy
Ot — e + 2M —, (780)
r
where e is the volume strain,
ou,  2u,
= . 7.81
“=or r ( )
The boundary conditions now are supposed to be :
r=a, t>0: Opr = —P, 7.82)
r—o0, t>0: orr = 0. (7.83)
These boundary conditions express that at time ¢ = 0 a pressure p is suddenly applied at the boundary of the cavity.
The Laplace transform (Churchill, 1972) of the displacement is defined by
U= / u exp(—st) dt, (7.84)
0

where s is the Laplace transform parameter, supposed to be positive. For all quantities the Laplace transform will be indicated by an overbar.

Applying the Laplace transform to the differential equation (7.77) gives

>t 2du 2u

ek g AT
dr? ~ rdr 12 “
where
k=s/cp.
The general solution of this differential equation is
. 1+ kr 1—Fkr
U= AW exp(—kr) + B e exp(+kr).

Because of the boundary condition at infinity the coefficient B can be assumed to be zero, so that the solution reduces to

1+ kr
e exp(—kr).

u=A

The volume strain corresponding to this solution is

A
€= —— exp(—kr).
T

(7.85)

(7.86)

(7.87)

(7.88)

(7.89)
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And the stress components are found to be
_ 1+ (kr) + d(kr)?
Grr = —4pkA Dk exp(—kr), (7.90)
. 14 (kr) — (2d — 1)(kr)?
oy = 2ukA (kr) (k(r)3 J(kr) exp(—kr), (7.91)
where d is an additional elastic coefficient defined by
A+ 2p0 1—v
d= = ) 7.92
4 2(1 —2v) (7.92)
The coefficient A must be determined from the boundary condition (7.82). The transformed boundary condition is
r=a:  Gpn=—L. (7.93)
s
With (7.90) the value of A is found to be
p (ka)®
= ka). 7.94
Tks 15 (ha) + d(ka)2 S0k (7.94)
The Laplace transform of the radial displacement now is, with (7.88) and (7.94),
3
_ pa 14 sr/c,
= —s(r — 7.95
“ Apsr? 1+ sa/c, + d(sa/cy)? exp[=s(r —a)/dl, (7.95)
or 5
_ pa 1+ s
_ —s(x—b 7.96
b 4psr2 1+ bs + db?s2 expl—s(z b)), (7.96)
where b = a/c, and z =r/c,.
Using the value (7.94) for the constant A the expressions for the transformed stresses are
3 2.2
. pa® 1+ xs+dz’s
__pre —s(x—b 7.97
0.7"7' 87"3 1 + bS + db282 eXp[ S('r )]7 ( )
31 —(2d — 1)z2s?
gy = b0 Lras— QA= DaZs ), (7.98)

2513 14 bs + db?s?

The mathematical problem now remaining is to find the inverse transform of the expressions (7.96), (7.97) and (7.98)

first be elaborated.

. The displacement will
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Displacement

In order to perform the inverse Laplace transformation of the expression (7.96) it is first required to decompose the denominator into the form
of a product of single factors, by writing

1+ bs + db*s* = db*(s + 51)(s + s2), (7.99)
where
s1 = (1 +1ia)/2db, (7.100)
s2 = (1 —ic/2db, (7.101)
with
a=V4d—-1=1/V1-2v. (7.102)

Using this decomposition equation (7.96) can be written as

3
_ pa Cy Cs Cs
= T A ap22 U - - 1
w Audb2r? { s + 5+ 81 + S+S2} exp[—s(z — b)), (7.103)
where L
C, = — = db?, (7.104)
5182

1—axs1
Co= ———, 7.105
? s1(s1 — s2) ( )

1—xs9
O3 = ———. 7.106
’ s2(s2 — s1) ( )

Inverse Laplace transformation is now a relatively simple operation, because the expression (7.103) consists of a summation of elementary
fractions. The process is somewhat laborious, however, because the coefficients Co and C3 are complex. After separation into real and imaginary
parts the final result is

3
pa acpT 2r—a . ,ac,T cpT
= 1- - —oo)  H 1
“ 4pr? { [cos( 2da ) aa sin( 2da JJexp( 2da)} (7), (7.107)
where
T=t—(r—a)/cp. (7.108)

The appearance of the Heaviside step function H(7) in the solution (7.107) indicates that, as expected, a shock wave travels through the medium,
with a velocity c,, the velocity of propagation of compression waves.
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The displacement ug of the inner boundary of the medium, at the radius of
the circular cavity (r = a), is of particular interest. This is found to be

TVYH(t) (7.109)

2da

pa ac,T 1 . ac,T
—_ — 1 _— —_—
U I { [cos( Sda ) 5 sin( Sda )] ex

This function is shown, for three values of Poisson’s ratio, in Figure 7.8.

It may be interesting to further investigate the behaviour of the solution
(7.107). It can be seen, for instance, that for large values of time the solu-
tion approaches the static solution u = pa®/4ur?. It also appears from the
solution that at the arrival of the shock wave the displacement is continuous,
but shortly after this arrival there is a relatively large effect, as indicated
by the factor r/a in the term between brackets. This shows that during the
passage of the shock wave the displacements are considerably larger than
in the static case. It is left as an exercise for the reader to plot the be-

eot/a haviour of the solution (7.107) for various values of the distance from the
P

4pug /pa
2
v =045
_ ggl=02 BN
1
\
0
0 1 2 3 4 5
Figure 7.8: Displacement of boundary.
Stresses

cavity.

Using the decomposition (7.99) the equations (7.97) and (7.98) can be written as

where

Orp =

T =

2db2r3

p

—b A1
b3 { s + 51 S+ 59 } expl=s(z —b)]; (7.110)
—b 11
3 { s—|—81 S—|—S } expl—s(z b)) (7.111)

1 2
_ 2.2

Dy — 1—axs1 +dx*sy (7.113)

81(81 — 82)
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1 — sy +da?s3

D5 = 7.114
s 82(52 - 51) ( )
1
E = = db?, (7.115)
5152
1-— —(2d — 1)x2s2
By = L%~ (2d—-Datsy (7.116)
51(51 - 52)
1— 2d — 1)z?%s2
By = Lo ws2t (2d=1ats (7.117)

s2(s2 — 1)
The inverse transformation of the expressions (7.110) and (7.111) is now relatively simple. After some mathematical manipulations the final
results are

a3 7'2—@2 ac,T T—a ac,T CyT
g = =P {1 (™) cos( STy = (F )2 Zin(S07) ] exp(—S20) L (), (1118)
a3 7"2 — a2 — 7"2 acy,T T—a — 7"2 acy,T CyT
on =P 1 (D) - D) eos @Dy (0 - A~ (S exp(- 2T (), (7.119)
where, as before,
a=+V4d—1=1/v1-2v, (7.120)
T=t—(r—a)/cp. (7.121)

The solutions indicate again that a shock wave is propagated through the medium at velocity c,. Before the arrival of this shock wave the
stresses are zero. The values of the stresses at the front of the wave can be obtained by letting 7 | 0. This gives

710 : UTT:—@, (7.122)
r
(2d — 1)pa
0 : = 7.123
Tl Ott dr ( )
Again, as in the case of a sinusoidal vibration, it is found that the dynamic stresses tend to zero as 1/r when r — oo.
After a very long time the influence of the shock wave has been attenuated. The stresses then are

3

pa
T00 O =T, (7.124)

DT
T 00 ow =g (7.125)

These expressions are in agreement with the static solution. The static stresses tend to zero as 1/r? at infinity. Again it may be noted that the
dynamic stresses far from the cavity are much larger than the static stresses.



Problems 151

Problems

7.1 Consider a thin-walled sphere, of radius a and wall thickness d, with d < a. In the interior of the sphere a pressure p is acting, the outer
boundary is free of stress. Determine the constants A and B, see eq. (7.11), for this case, and determine the tangential stress in the wall of the
sphere. Note that this is the problem of a pressurized balloon.

7.2 From equation (7.74) derive an asymptotic expression valid for large values of the frequency w. Express the material constant in this
expression into the Poisson ratio v.

7.3 In Figure 7.8 the displacement of the cavity boundary is plotted as a function of time, using the dimensionless parameter c,t/a. Replot
this figure, now using a time scale based on Young’s modulus F, i.e. using a dimensionless paremeter c1t/a, where ¢; is defined by ¢; = /E/p.

It may appear that the waves in the plots now have approximately equal periods.

7.4 The solution (7.118) contains a damping factor exp(—c,7/2ma). Normal values for the propagation speed of compression waves in soils
are of the order 1000 m/s. Now estimate the duration of the shock generated from a cavity of radius 1 m.

7.5 In the solution (7.118) assume that r > a. Sketch the stress at a certain point as a function of time.

7.6 Redraw Figure 7.6, using the parameter w/w; as the independent variable, with ws = \/u/pa?. If the resonance frequency now appears
to be independent of p it has been found that resonance is determined by the velocity of shear waves.



Chapter 8

ELASTOSTATICS OF A HALF SPACE

In soil mechanics it is often required to determine the stresses and deformations of a soil deposit under the influence of loads applied on the
upper surface. As a first approximation it may be useful to consider an elastic half space, or, in the case of plane strain deformations, an elastic
half plane, loaded on its upper surface, see Figure 8.1. In this chapter some solutions are derived, for vertical loads. For the sake of completeness

z

Figure 8.1: Half space.

the basic equations of the theory of linear elasticity are included. The exam-
ples to be presented are the classical solutions for a point load and a line load
on a half space (the problems of Boussinesq and Flamant), the solution for a
uniform load on a circular area, and some mixed boundary value problems.
The problems can be solved effectively by using Fourier transforms or Hankel
transforms. These methods will be described briefly.

It can be expected that for the class of problems considered here, an elas-
tic half space loaded by vertical loads on its surface, the vertical displace-
ments are more important than the horizontal displacements. On the basis
of this expectation, which is also confirmed by the analytical solutions that
can be obtained for certain problems, an approximate method of solution can
be developed by neglecting all horizontal displacements. This approximate
method, which was first proposed by Westergaard (1936), is also presented
in this chapter, and its results are compared with the complete analytical
solution.

It should be noted that throughout this chapter the material is supposed

to be homogeneous and isotropic, and linear elastic, so that its mechanical properties can be fully characterized by an elastic modulus F and
Poisson’s ratio v, or some other combination. The strains are assumed to be small compared to 1.

8.1 Basic equations of elastostatics

The basic equations of the theory of elasticity are the conditions on the stresses, the strains, and the displacements in a linear elastic continuum.
These are the conditions of equilibrium, the constitutive relations, and the compatibility conditions.

Let the stresses and displacements be described in a cartesian coordinate system x, y, z. The components of the displacement vector in the
three coordinate directions are denoted by u,, u, and u.. If it is assumed that the displacement gradients are small compared to 1, then the

152
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expressions for the strains are

_ Oug

Ouy

Ouy

1
For = Bz Ewy_z(é‘y Ox ),
_ duy _ 19y Ous
Eyy = ay vz = 3( 92 dy )s (8.1)
_ Ou, B l(auz 4 8uz)
f2 T g0 22 = 3y 0z "

The three normal strains €4, €, and €., express the relative elongation of line elements in the three coordinate directions (Al/l), and the three
shear strains €.y, €y, and €., express the deformation of right angles. The volume strain e = AV/V is the sum of the normal strains in the
three coordinate directions,

€=¢gg+Eyy + sz (8.2)
The stresses can be expressed into the strains by the generalized form of Hooke’s law. For an isotropic material this is
Opz = A&+ 2UEqy, Opy = 2UE gy,
Oyy = e + 20ey,, Oyz = 2UEy, (8.3)

0.z = e+ Qﬂgzzy Ozzx = 2,“/5,213

Here A and p are the Lamé constants. These constants are related to the modulus of elasticity E (Young’s modulus) and Poisson’s ratio v by

L’ = _E (8.4)
(I+v)(1-2v) 2(1+v)
For the stresses in the equations (8.3) the sign convention is that a stress component is positive when acting in positive coordinate direction
on a plane with an outward normal in positive direction. This is the usual sign convention in continuum mechanics, which implies that tensile
stresses are positive. It may be noted that in soil mechanics the sign convention is often just opposite, with compressive stresses being considered
positive.

The stresses must satisfy the equations of equilibrium. In the absence of body forces these are

)\ =

004y | 0oy 00,4 0 o o
Oz Oy 8z e
0 0 0

6 Tz 8 Yz 8 zZz

2 Ty 2 = 07 Oze = Ogz-

ox Jy 0z

The second of these equations is illustrated in Figure 8.2.
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L 2

O'yy<_ ..........

> Oyy + Aoy,

Figure 8.2: Equilibrium of element.

The stresses, strains, and displacements in an isotropic linear elastic body
must satisfy all the equations given above, and in addition must satisfy the
conditions on the boundary, which may specify the surface stress or the
surface displacement, or a combination. For general methods of analysis the
reader is referred to textbooks on the theory of elasticity, e.g. by Timoshenko
& Goodier (1970), or Sokolnikoff (1956). In the next sections some special
solutions will be presented.

For the purpose of future reference it is convenient to express the equa-
tions of equilibrium in terms of the displacements. If it is assumed that
the parameters A and p are constants (which means that the material is
homogeneous), one obtains from (8.1), (8.3) and (8.5),

A+ u)% + uV3u, =0,

Oox

0
et p)a—; + V2, = 0, (8.6)
A+ u)% + uV3u, = 0.

These are usually called the Navier equations. They are three equations with three variables, the three displacement components. Their solution
usually also involves the stresses, however, because the boundary conditions may be expressed in terms of the stresses.

8.2 Boussinesq problems

An important class of problems is formed by the problems for a half space (2 > 0), bounded by the plane z = 0, loaded by vertical normal
stresses on the surface only, see Figure 8.3. This is called the class of Boussinesq problems, after the French scientist who published several
solutions of such problems in 1885.

This type of problem can be solved conveniently by introducing a specially chosen displacement function ¢ (Green & Zerna, 1954), from
which the displacements can be derived by the formulas

Uy = (1= 2v)— + z

uy =(1-20)=—+ z

1ol 0%¢
oz 00z’ (8.7)
o¢ , 0% (8.8)

Ay Oydz’
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AT v

d¢ 0%¢
Substitution of these expressions into the equations (8.6) shows that all three
equations of equilibrium are identically satisfied, provided that the function

¢ satisfies the Laplace equation

V2 =0. (8.10)

The advantage of the introduction of the function ¢ is that there now is only
a single unknown function, which must satisfy a relatively simple differential
equation, eq. (8.10), for which many particular solutions and several general

Figure 8.3: Boussinesq problem. solution methods are available. That the solutions are useful appears when
the stresses are expressed in the function ¢. With (8.1), (8.3) and (8.10) one obtains for the normal stresses

z

Ovz _ ) o ¢
2 3 2
Toy _ (1 _ )22, 00 5,0 (8.12)

20 Oy? 020z Yoz

0. 09 ¢

For the shear stresses the following expressions are obtained

Oy 0% Fat0)

— =(1-2 14
2u ( ) 0xdy + Zaxayaz’ (8.14)
Oy foatn

o Z@yazQ’ (8.15)
O 030

o “5 5 (8.16)

From the last two equations it can be seen that on the surface z = 0 the shear stresses are always zero,

2=0: 0,3 =0,y =0. (8.17)
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This means that the function ¢ can only be used for problems for which the plane z = 0 is free from shear stresses. This is an essential restriction.
On the other hand, this restriction appears to lead to a relatively simple mathematical problem, namely the solution of the Laplace equation
(8.10). On the boundary z = 0 the stress 0., may be prescribed, or the displacement u,. On the surface z = 0 the expression for the vertical
displacement reduces to

¢

=0 : uy=—-2(1—v)=, 8.18
z U (1-v) o ( )
and the expression for the vertical normal stress reduces to

82

Thus, if the displacement or the stress on the surface is given, this means that either the first or the second derivative of the displacement
function ¢ is known. In the next sections a number of solutions will be presented.

8.2.1 Concentrated Force

A classical problem, the solution of which was first given by Boussinesq, is the problem of a concentrated point force on the half space z > 0, see
Figure 8.4. The solution is assumed to be given by the function

P P
. ¢ = I In(z + R), (8.20)
where
R = /22 4+ y2? + 22 (8.21)
It can easily be verified that this function indeed satisfies the differential
equation (8.10). That it satisfies the correct boundary conditions is not
immediately obvious, but may be verified by considering the stress field.
Differentiation of ¢ with respect to z gives
dp P 1
z
- 8.22
9z 4w mu R’ ( )
Figure 8.4: Concentrated force on half space. o2
$_ P 2z (8.23)
822 Amp R3’ '
83¢ P 1 22
—3—=). 8.24
823 Amp (R R5) (8:24)
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The vertical normal stress o, is now found to be, with (8.13),

3P 23

On the surface z = 0 this stress is zero everywhere, except in the origin, where the stress is infinitely large. That the solution is indeed the
correct one can be verified by integration of the stress over the surface are. This gives

/ / 0., drdy = —P. (8.26)

Every horizontal plane transfers a vertical force P, as required.
The vertical displacement is, with (8.8),
P 22

L= 2(1 — . 8.27
w = g 2= 0)+ 5 (3.27)
On the surface z = 0 the displacement is, expressed in terms of E and v,
P(1 - P(1—1?
z2=0: u, = ( V): ( l/), (8.28)

27 pr nEr

where r = \/22 + 92. In the origin the displacement is singular, as might be expected in this case of a concentrated force.
All the other stresses and displacements can of course also be derived from the solution (8.20). This is left as an exercise.

8.2.2 Uniform load on a circular area

Starting from the elementary solution (8.20) many other interesting solutions can be obtained, see the literature (Timoshenko & Goodier, 1970;
Sokolnikoff, 1956). As an example the displacement of the center of a circular area carrying a uniform load will be derived, see Figure (8.5).
The starting point of the considerations is the observation that a load of magnitude pdA at a distance r from the origin results in a vertical
displacement at the origin of
pdA(1—v?)
wEr ’

as follows immediately from the formula (8.28).

The displacement due to a uniform load over a circular area with radius a can be obtained by integration over that area. Because dA = r dr df
one obtains, after integration over 6 from 6 = 0 to 6 = 27, and integration over r from r = 0 to r = a,

~ 2pa(l —v?)

= = : 2 _— 2
r=0,2z=0: u = (8.29)
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This is a well known and useful formula. If the formula is expressed in the
r total load P = wa?p it reads
2P(1 —1v?)
=0,2=0: u=—— "7 8.30
T , 2 U —Ba ( )

This shows that the displacement of a foundation plate can be reduced by
making it larger, as one would expect intuitively. The relationship appears
to be that the displacement is inversely proportional to the radius a of the
plate, and not to the area of the plate, as one might perhaps have expected.
Actually, this result can also be obtained by considering the physical
dimensions of the parameters of the problem. It can be expected that the
displacement will be proportional to the load P, because the theory is linear,
Figure 8.5: Uniform load on circular area. and it can also be expected that the displacement then will be inversely
proportional to the modulus of elasticity. The only possibility to obtain a

quantity having the dimension of a length then is that the displacement is proportional to P/Fa.

z

8.3 Fourier transforms

A class of solutions can be found by the use of Fourier transforms (Sneddon, 1951). This method will be presented here, for the case of plane
strain deformations (u, = 0).
The solution is sought in the form

¢ = /Oo{f(oz) cos(ax) + g(a) sin(ax)} exp(—az) da, (8.31)
0

where f(a) and g(«) are as yet unknown functions of the variable .

That (8.31) is indeed a solution follows immediately by substitution of the elementary solutions cos(ax) exp(—az) and sin(az) exp(—az) into
the differential equation (8.10). For z — oo the solution will always approach zero, which suggests that this solution can perhaps be used for
cases in which the stresses can be expected to vanish for z — oo.

With (8.13) one now obtains

Ozz

z2=0 : o = 7/0 o? {f(a) cos(ax) + g(a) sin(ax)} da. (8.32)

Suppose that the boundary condition is
2=0, —co<x <00 : 0., =q(x), (8.33)
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in which ¢(z) is a given function. Then the condition is that

/OOO{A(a) cos(ax) + B(a) sin(az)} da = q(x), (8.34)

where
Ala) = —2pa? f(a), (8.35)
B(a) = —2ua? g(a). (8.36)

The problem of determining the functions A(a) en B(«) from (8.34) is exactly the standard problem from the theory of Fourier transforms.
The solution is given by the inversion theorem, which will not be derived here, see the literature on Fourier analysis (e.g. Sneddon, 1951). The
final result is

Ala) = %/_00 q(t) cos(at) dt, (8.37)
B(a) = %/_OO q(t) sin(at) dt. (8.38)

The problem has now been solved, at least in principle, for an arbitrary surface load g(x). In a specific case, with a given surface load g(z) the
integrals (8.37) and (8.38) must be evaluated, and then the results must be substituted into the general solution (8.31). Depending on the load
function this may be a difficult mathematical problem. In the next section a simple example is given, in which all integrals can be evaluated
analytically.

8.3.1 Line load
As a first example the case of a line load on a half space will be considered (Flamant’s problem), see Figure 8.6. In this case the load function is

o(z) = { —F/(2¢), |z] <e, (8.30)

0, |z| > e,
where it will later be assumed that e — 0. From (8.37) and (8.38) it follows that

F sin(ae)

)

Ala) = —

mE «

B(a) =0.
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F
x If € — 0 this reduces to
A(a) = —F/m, (8.40)
B(a) =0. (8.41)
With (8.35) and (8.36) one obtains
F
= — .42
o) = 3o (3.42)
z
Figure 8.6: Line load on half space. g(a) = 0. (8.43)
The solution of the problem therefore is
6= F [ cos(ax) exp(—az) o (8.44)

27 J a?

Although this integral does not converge, due to the behavior of the factor o? in the denominator near o — 0, the result may well be useful,
because the relevant quantities are derived expressions, such as the stresses, which require differentiation. It is found, for instance, that

a2¢ F oo

— = —— cos(ax) exp(—az) da

5ot = “3m; | coslon) exp(-a2) da.
and this integral converges. The result is

¢ F z

92 i (8.45)
In a similar way one obtains )
% - %ﬂ i - (8.46)
After another differentiation one obtains
o F x?—2? (8.47)

823 2mp (22 + 22)2
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and " s s
F _
6 __LF zoz (8.48)
0120z 2mp (22 + 22)2
The expressions for the stresses are finally, using (8.11), (8.13) and (8.16),
2F x2z
Ogpy — —7 7(372 T 22)27 (849)
2F 23
S R — 8.50
7 m (%4 22)? (8.50)
2F 22
py = ——— — 2 8.51
7 T (22 4 22)2 (8.51)
These are usually called the Flamant formulas. Their form is somewhat simpler when using polar coordinates = rcosf and z = rsin6,
2F
Opy = ——— sinf cos? 6, (8.52)
wr
2F
0., = —— sin®6, (8.53)
wr
2F
Opr = —— sin? 0 cosb. (8.54)
wr
When the stress components are also transformed into polar coordinates the formulas are even simpler,
2F 2F
O = —— sinf = ——, (8.55)
r wr
ogp =0, (8.56)
org = 0. (8.57)

It appears that the only non-vanishing stress is the radial stress, and that it decreases inversely proportional to the distance from the origin,
and with the sine of the angle with the horizontal axis.
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8.3.2 Strip load

Another classical example is the case of a strip load on a half space, see Figure 8.7. The solution of this problem can be found in many textbooks on

P theoretical soil mechanics. Here the solution will be determined using the
Fourier cosine transform.
>\ : z In this case the boundary condition is
| |
-p, |z| <a,
| o 02 q(z) = P 2l (8.58)
! | 0, |z|>a.
! |
| | The stress function ¢ now is found to be
| I
6= P /°° sin(aa) cos(a;)x) exp(—az) do, (8.59)
T Jo o
or
z oo . .
D {sin[a(z + a)] — sin[a(x — a)]} exp(—az)
Figure 8.7: Strip load on half space. ¢= a 0 a3 do. (8.60)

Again, this integral does not converge, but its second and third derivatives, which are needed to determine the stresses, do converge. Expressions
for the stresses can be obtained using equations (8.11), (8.13) and (8.16), and a table of integral transforms. The result is

Opy = fg{arctan(x a) - arctan(x ; a) - (x(f:);:_zﬁ (m(:va);f% }, (8.61)
Osz = —g{arctan(x a) —arctan(x;a) + (x(—f:);f% - (x(fc:);f%}’ (8.62)

2 2

Oow = p{( : - : } (8.63)

alz+a)2+22 (z—a)2+22

These are well known formulas, see for instance Sneddon (1951). They can also be written in the form

Opy = 78{91 — 05 — sin 67 cos 01 + sin Oy cos O3}, (8.64)
™
Ory = 73{01 — 05 + sin 6y cosfy — sin by cos by}, (8.65)
™
Ops = B{COS2 61 — cos? 03}, (8.66)
T

where the angles 6; and 6, are indicated in Figure 8.7.
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8.4 Axially symmetric problems

Problems for an elastic half space loaded by a radially symmetric normal stress on the surface z = 0 can conveniently be solved by the Hankel
transform method (Sneddon, 1951). The problem can be formulated in terms of the displacement function ¢ introduced in egs. (8.8). This
function must satisfy the Laplace equation (8.10). In axially symmetric coordinates this equation is

2 10¢ %6

—+-—4+=—=0. 8.67
or? + r Or + 022 (8.67)
The Hankel transform of the function ¢ is defined as
869 = [ rolrz) do(r)dr, (3.68)
0
where Jy(z) is the Bessel function of the first kind and order zero. The inverse transformation is (Sneddon, 1951)
o(r, z) = § (&, 2) Jo(&r) dé. (8.69)
0
The advantage of the Hankel transformation is that the operator
0? L 10
or2  r or
is transformed into multiplication by —¢2. This means that the differential equation (8.67) becomes, after application of the Hankel transform,
d*® 9
— — &0 =0, 8.70
dz? ¢ (8.70)
which is an ordinary differential equation. The general solution of this equation is
® = Aexp(£z) + Bexp(—£2), (8.71)

where the integration constants A and B may depend upon the transformation parameter . In the half space z > 0 the constant A can be
assumed to vanish.

If the boundary condition is
z2=0 : 04, =q(r), (8.72)

then we obtain, with (8.19) and (8.71),
—2uBE? = / rq(r) Jo(&r) dr, (8.73)
0

from which the value of B can be determined. In the next two sections some examples will be given.
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8.4.1 Uniform load on a circular area

A well known classical problem is the problem of a uniform load over a circular area. This problem was already considered above, where the
displacement of the origin was derived from a particular solution, see eq. (8.29). Here the complete solution will be derived by a straightforward
analysis.

In this case the load function ¢(r) is

-p, r<a,
q(r) = (8.74)
0, r>a.

Substitution of this function into the general expression (8.73) gives

=5 :’52 /0 r Jo(&r) dr. (8.75)

This is a well known integral (Abramowitz & Stegun, 1964, 11.3.20). The result is

pa
B=—+-1J 8.76
L ) (5.76)
where Ji () is the Bessel function of the first kind and order one.
The displacement function ¢ now is

< J —&2) J,

¢ — 12&/ 1(5@) eXp(2 fz) 0(570) dg (877)
K Jo 3

Although this integral itself cannot be evaluated, because of the logarithmic singularity in the origin, certain useful results can still be derived from
it, because the physical quantities such as the displacements and the stresses must be derived from it by differentiation, and after differentiation
the integrals may well converge, as indeed they do.

The vertical displacement of the surface can be obtained from the formula (8.18). With (8.77) this gives

1- < J J

Z:():UZ:M/ S(Ea) Joler) o (8.78)
H 0 3

This integral is given in Appendix A, see (A.69). The result is

PR 2pa(l —v) { E(r?/a?), r<a, (5.79)

TH F(r?/a?), r>a,
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0.5

where

r/a

_ Fz) = Ve [B(l/z) - (1 -1/x) K(1/)], (8.80)

and where K(z) and E(z) are complete elliptic integrals of
the first and second kind, respectively. A short list of val-
ues, adapted from Abramowitz & Stegun (1964), is given in

Table A.2, in Appendix A. For = 0 both K(x) and E(x) are
equal to /2. The result (8.79) is also given by Timoshenko &
Goodier (1970).

Figure 8.8 shows the displacements of the surface in this case
in graphical form. The displacement of the origin is of special

Uz [ uo

Figure 8.8: Displacements of the surface.

—022/p
00 0.5 1
I —
//
z/a 5 /

|

|
10!

Figure 8.9:

Vertical stress o, for r = 0.

interest. This is found to be

PO, 20w = = 2TV (8.81)
L
which agrees with the expression (8.29) found before.

It should be noted that in this section the symbol E is used
for the complete elliptic integral, whereas it has also been used
earlier for Young’s modulus of elasticity. The reader should carefully distinguish between the
symbol E for Young’s modulus, and the function E(z), which denotes the complete elliptic
integral of the second kind.

The vertical normal stress o, is, with (8.13) and (8.77),

Ozz
p

Along the vertical axis, for » = 0, this integral reduces to

. / (14 €2)1(6a) exp(—€2) Jo(Er) de. (8.82)

JZZ

p

r=0:

= — /000 a(l+&2)J1(€a) exp(—£&z) dE, (8.83)

which can be evaluated using a table of Laplace transforms (Churchill, 1972). The result is

Oz ZS
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This is a well known formula, see e.g. Timoshenko & Goodier (1970). Just under the load the vertical stress is —p, and this stress tends to zero
when z — oo, see Figure 8.9.

8.5 Mixed boundary value problems

In the previous sections the boundary value problems considered were such that on the entire boundary the surface stresses were prescribed.
More complicated problems occur in the case that on a part of the boundary the surface stresses are given, and the displacements are prescribed
on the remaining part of the boundary. These problems are said to be of the mized boundary value type. In this section a method of solution
to these problems is illustrated by considering some examples.

8.5.1 Rigid circular plate

In the first example a vertical load P is applied to a half space by a rigid circular plate of radius a, see Figure 8.10. In this case the boundary
conditions on the upper surface are that the shear stress 0., = 0 along the entire surface, and that

z2=0 : u, = wo, 0<r<a, (8.85)
z=0: 0,, =0, r > a, (8.86)
where wy is the given vertical displacement of the plate.
P If the elasticity equations are formulated using a potential function ¢, as in
the previous sections, the general solution for the half plane z > 0 is, with
" (8.69) and (8.71),
o) = [ B exp(~g)u(ér) de (8:87)
0

where B(€) is an unknown function, that should be determined from the
boundary conditions. Using egs. (8.18) and (8.19), the boundary conditions
(8.85) and (8.86) can be expressed as

0
z2=0 : uz:fQ(lfl/)a—gb:wo, 0<r<a, (8.88)
s z
: i 9%¢
Figure 8.10: Rigid circular plate on half space. 2=0: 0,, = —2u— =0, r > a. (8.89)

a 022
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With (8.87) these conditions can also be written as

/0 € B h(er)ds = ) = s, 0<r<a (8.90)

/ €3 B(&) Jo(&r)de =0, r> a. (8.91)
0

A system of this form is denoted as a pair of dual integral equations. For the solution a method described by Sneddon (1966) will be used here,
see also Selvadurai (1979). In the example the function f(r) is a constant, but the method applies equally well to the more general case that
f(r) is an arbitrary function. Some general aspects of the solution of dual integral equations are given in Appendix B.

The solution method consists of two steps, each addressing one of the dual integral equations. The first step is that it is assumed that the
function £2B(€) can be represented by the finite Fourier transform

B¢ = /0 ' W (t) cos(&t) dt, (8.92)

where W (t) is a new unknown function, defined in the interval 0 < ¢ < a. Substitution of (8.92) into the integral appearing in (8.91) gives

/Ooo &2 B(€) Jo(ér) dé = /Ooo 3 {/Oa W (t) cos(t) dt} Jo(ér) dé, (8.93)

or, using partial integration,

/ " B(E) Joler) de = W(a) / " sin(€a) Jo(er) de — / "W { / " sin(ér)Joler) ds} dt. (5.94)

A well known integral of the Hankel type is, see eq. (A.76),

0, r>t,

8.95
(2 —r2)~12 0<r<t. (8.95)

/0 " sin(et) Jo(er) de = {

Because in the last integral in eq. (8.94) the value of ¢ is restricted to the interval 0 < ¢ < a, it follows that both integrals in the right hand side
are zero if r > a, so that it can be concluded that the second boundary condition (8.91) is automatically satisfied, whatever the function W (t)
is.
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The second step in the solution method is to determine the function W (¢) from the first boundary condition, eq. (8.90). Substitution of
(8.92) into the integral in this condition gives, again assuming that the order of integration may be interchanged,

/0oo € B(€) Jo(¢r) d€ = /0“ W(t) {/OOO cos(&t)Jo(ér) dg} dt. (8.96)

Another well known integral of the Hankel type is, see eq. (A.77),

0, 0<r<t,

8.97
(r2 ==Y r>t (8.97)

/000 cos(&t)Jo(Er) dE = {

This means that in the interval 0 < t < a the integrand of (8.96) is zero if r < ¢t < a. It follows that the boundary condition (8.90) can be
written as

TW(t)
/0 7(72 —2)i7 dt = f(r). 0<r<a. (8.98)
This is an Abel integral equation. Its solution is (Sneddon, 1966, p. 42)
2.d [t rf(r)
W(t)=—-— A dr, 0<t<a. 8.99
®) ﬂdt/o (12 — r2)1/2 " “ (8.99)

In the example of a uniform displacement of a rigid plate the function f(r) is, see (8.90),

wo
= — 0< . 8.100
f0) = g 0<r<a (5100
In this case the function W (t) is found to be the constant
wo
Wi(t) = 8.101
) = T (8.101)

The function £2B(€) now is, with (8.92),

2 —
£ B(¢) Ao ¢ (8.102)
The solution for the potential function ¢ is, with (8.87)
_wp > sin(&a)
o= o [ TR ewl—ga)aler) de (5.103)
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Of particular interest is the vertical normal stress at the surface. With (8.19) this is found to be

z2=01: 0, =— u% = % /OOO sin(€a)Jo(&r) d€. (8.104)
Using the integral (8.95) the boundary stress is
0, r>a,
2=0: 0, = 27m(a2]i IS 0<r<a, (8.105)
where o 2 Baw, 106
1—v2’ '

the total force on the plate. The first part of (8.105) confirms the second boundary condition (8.86). The second part is a well known result of
the theory of elasticity, see e.g. Timoshenko & Goodier (1970).
Another quantity of special interest is the vertical displacement of the surface. With (8.18) and (8.103) this is

2wy [ sin(€a)
z2=0: u,=—
™ Jo §

exp(—&€z)Jo(&r) dE. (8.107)

Using the integral (A.78) the displacement of the boundary is found to be
wo, r <a,
2=0:u=9{ , (8.108)
Zwo arcsin(a/r), T > a.

The first part of (8.108) confirms the first boundary condition (8.85). The second part is a well known result of the theory of elasticity, see e.g.
Sneddon (1951). The surface displacements are shown, as a function of r/a, in Figure 8.11.

Alternative derivation

An alternative for the second step of the derivation, avoiding the Abel integral integration, is as follows.
The first boundary condition is, see (8.90),

" B(e) Dler) de = (1) = 5

< 8.109
=k 0<r<a, ( )

0
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r/a

0.0 1.0 2.0 3.0 4.0
0.0

—

7

1.0

Figure 8.11: Surface displacements, rigid circular plate.

The Bessel function Jy(£r) can now be eliminated form this equation by using the integral

/0 mh(&) dr = Smfs), (8.110)

which can be considered to be the inverse form of the integral (8.95) when this is considered as the Hankel transform of the function sin(&t)/€.
It follows that eq. (8.109) can also be written as

00 t
) rf(r)dr
/O gB(f) sm(§t) df:/o (152—(7")2)1/2’ 0<t<a, (8111)
or, using the representation (8.92), and interchanging the order of integration,

/OGW(S){/OMWdf}ds:/Otm, 0<t<a, (8.112)

The integral between brackets is a well known Fourier integral,

* sin(&t) cos(§s) . %, s <t,
/O TSN e = { . (8.113)

& , s>t



Arnold Verruijt, Soil Dynamics : 8. ELASTOSTATICS OF A HALF SPACE 171
This means that (8.112) reduces to
/OtW(s)ds:i/otm, 0<t<a. (8.114)
Differentiation with respect to ¢ gives
W(t) = i c(lit m, 0<t<a, (8.115)

which is the same as the solution (8.99) derived above.

8.5.2 Penny shaped crack

Another class of problems involving mixed boundary conditions is concerned with the stress distribution in an elastic medium with a circular

(penny shaped) crack, see e.g. Kassir & Sih (1975).
crack in an infinite elastic plate, loaded by a uniform internal pressure p in
the crack, the problem can be schematized as a problem for a half plane (see
Figure 8.12), with the boundary conditions

L r

z=0 :

z=0 :

z

Figure 8.12: Penny shaped crack.

u, = —-2(1—v)—

o(r,z) = /O " EB(€) exp(—€2) Ty (Er) de,

For the problem of a

o¢

92 =0, r>a,

(8.116)

2

5‘22 0<r<a. (8.117)

iy 2

If the elasticity equations are again formulated using a potential function ¢,
the general solution for the half plane z > 0 is, with (8.69) and (8.71),

(8.118)

where B(¢) is an unknown function, that should be determined from the boundary conditions. With (8.118) these conditions can also be written

as

&) Jo(ér)d€ =0,

J, e
[,

) Jo(€r) d§ = g(r),

r>a, (8.119)

0<r<a, (8.120)



Arnold Verruijt, Soil Dynamics : 8. ELASTOSTATICS OF A HALF SPACE 172

where in the example considered g(r) = p/2u.
In order to solve the system of dual integral equations (see also Appendix B), in two steps, it is first assumed that the function ¢2B(¢) can
be represented by the finite Fourier transform

B¢ = /0 V(t) sin(&t) dt, (8.121)

where V(¢) is a new unknown function, defined in the interval 0 < ¢ < a. Substitution of (8.121) into the integral appearing in (8.119) gives, if
the order if integration is interchanged,

B (e de= [ V(o) { / sin(€t) o (Er) df} d. (8.122)
0 0 0
In the integral the variable ¢ is always smaller than a, so that for r > a it is certain that » > ¢, and then the integral is zero, see (A.76). This
means that the boundary condition (8.119) is automatically satisfied by the representation (8.121).
In the second step of the solution the unknown function V'(¢) is determined from the remaining boundary condition (8.120). For this purpose
the definition (8.121) is first rewritten, by using integration by parts, as

€2B(€) = V(a) Cosfa) —V(0) + /O Vi Cosft) dt. (8.123)
It can be assumed, without loss of generality, that V' (0) = 0, so that
E3B(&) = V(a) cos(éa) + /Oa V' (t) cos(&t) dt. (8.124)
Substitution into (8.120) now gives
/0 v { /0 ~ Jo(er) cos(ét) dg} dt - V(a) /O ~ Jo(ér) cos(€a) de = %, (8.125)
where it should be noted that r < a. The integrals are of the form of eq. (A.76), hence
0, t >,

/000 cos(&t) Jo(Er) dE = { (8.126)

(r2 —t)=12 o0<t<r

This means that eq. (8.125) reduces to
s V/(t)
/0 702 — )i dt = g(r). (8.127)
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This is again an Abel integral equation. Its solution is, as before, see (8.99),
2d rg(r)
/ S A—
Vi) =~ N dr,  0<t<a. (8.128)
Integrating this equation gives, taking into account that it has already been assumed that V' (0) = 0,
2 [t rg(r)
In the example considered here g(r) = p/2u. In that case the result is
¢
viy=L", o<t<a (8.130)
T
In this case the function B(§) is, with (8.121),
2B(¢) = 2L {sm(ga) — cos(¢a } 8.131
eB(6) = 2 { T —cos(é) (8131)
The potential function ¢ now is, with (8.118),
pa [ exp(—£&z)Jo(ér) [ sin(éa) ‘
o= ﬁ/ e ta —cos(éa) ¢ d€. (8.132)
One of the most interesting quantities is the normal stress at the surface. This is found to be
2 2
2=0: 0, = —2u a ¢ e / Jo( {Sm(ga) cos(ga)} de. (8.133)
Using the Hankel transforms (A.77) and (A.78) this gives
z=0,r<a : o,, = —p, (8.134)
=0 02 = — Plarcsin(a/r) - — (8.135)
z=0,r>a : Uzz——w[arcsmar)—<r2_a2)1/2]. :

Equation (8.134) confirms the boundary condition (8.117), and eq. (8.135) is a well known result (Sneddon, 1951, p. 495).



Arnold Verruijt, Soil Dynamics : 8. ELASTOSTATICS OF A HALF SPACE 174

Alternative solution

An alternative for the second step of the derivation is as follows. In this alternative method the Bessel function Jo(&r) is eliminated from the
boundary condition (8.120) by using the integral (8.110),

s r _ sin(¢s)
This boundary condition (8.120) then is transformed into the form
o _ S org(r
/0 €2 B(€) sin(¢s) d¢ = /0 (82_502))1/2 dr, 0<s<a. (8.137)

The function B(£) can be written in the form of eq. (8.124), which was obtained by partial integration from the actual definition (8.121), and
assuming that V(0) =0,

E3B(€) = V(a) cos(€a) + /O ’ V'(t) cos(&t) dt. (8.138)

Substitution into (8.137) gives
i /Ooo sin(&s)gcos(ﬁa) g+ /Oa v {/000 sin(§S)£COS(ft) d{} gt —

> __rg(r)
/0 m d’l", 0 <s< a, (8139)

where it should be noted that in the second integral 0 < ¢ < a. The integrals are of the form of eq. (8.113),

> sin(ét)cos(és) [ G, s<t
/0 T d§—{ . (8.140)

This means that the first integral of (8.139) is zero, and that in the second integral the integration can be restricted to the interval 0 < ¢ < s.
The result is

Ty = s:g T_rolr) r s<a
/OV(t)dt—V() /0( dr, 0<s<a. (8.141)

. $2 — r2)1/2

This is the same solution as obtained before, see (8.129). The present derivation seems to be simpler, as it avoids the Abel integral equation.
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8.6 Confined elastostatics

Although several elastic problems have been successfully solved analytically in the preceding sections, and many more solutions can be found in
the literature, the solution methods are relatively complex, and it seems attractive to attempt to develop a simplified approximate method of
solution. This may be especially useful as a preparation for the more difficult problems of elastodynamics, which will be considered in the next
chapter.

For problems of an elastic half space in which the load consists of vertical normal stresses on the surface only, it can be expected that the
vertical displacements are considerably larger than the lateral displacements. This suggests to develop an approximate method of solution by
assuming that the horizontal displacements are zero, so that the only remaining displacement is the vertical displacement. Problems solved
under these assumptions will be referred to as confined elastic problems here. The approximation was introduced by Westergaard (1936), by
considering the vanishing of the horizontal deformations as a consequence of a reinforcement of the material by inextensible horizontal sheets.

The basic assumptions are

up =0, (8.142)
u, =0, (8.143)
uy = w(x,y, 2). (8.144)

The vertical displacement will be denoted by w, for simplicity.
Using these assumptions the only relevant basic equation is the equation of vertical equilibrium, which now requires that

0w 0w 0w
— 21)—— = 0. 14
Popz t H o + (A +2p) 552 0 (8.145)

The remaining relevant stress components are the stresses on horizontal planes. They are related to the vertical displacements by the equations

ow
zz — 2 ) .14
o (A4 2u) P (8.146)
ow
zx — M= .14
Oza = Hg (8.147)
ow

O = iy (8.148)



Arnold Verruijt, Soil Dynamics : 8. ELASTOSTATICS OF A HALF SPACE 176

8.6.1 An axially symmetric problem

In case of an axially symmetric surface load the differential equation (8.145) can be formulated, using polar coordinates, as

w 10w 0%w
gf0"w  low ow _
K { orz  ror } 022 0 (8.149)
where 19
0’ r_ 2= (8.150)

T x+2n 20-v)

If the load is a uniform load on a circular area, the boundary condition is, with (8.146),

-p, r<a,
z2=0: ()\+2u)?;::{ Op e (8.151)

For the solution of this problem the Hankel transform method seems particularly suited, as in other axially symmetric cases. The Hankel
transform of the vertical displacement w is defined by

W(Ez) = [ ru2) dofre) dn (8152)
0
where Jy(z) is the Bessel function of the first kind and order zero. The inverse transformation is (Sneddon, 1951)
wlr2) = [ €W(62) dn(er) . (8.153)
0
The differential equation (8.149) becomes, after application of the Hankel transform,
2w,
—&W =0 8.154
a2 & g ( )

which is an ordinary differential equation. The general solution of this equation is
W = Aexp(&nz) + Bexp(—£&nz), (8.155)

where the integration constants A and B may depend upon the transformation parameter . In the half space z > 0 the constant A can be
assumed to vanish, because of the boundary condition at infinity. With the boundary condition (8.151) the value of the constant B is found to
be

_# ar T T
= ok E ), Jo(&r) dr. (8.156)
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This is a well known integral (Abramowitz & Stegun, 1964, 11.3.20). The result is

pa

B=—P"___ J(a), 8.157
Ot ame e (8.157)
where Ji () is the Bessel function of the first kind and order one.
The vertical displacement w now is
oo P [ ) ) 159
n(A+2u) Jo £

The standard tables of integral transforms do not give closed form expressions of this integral. However, for the displacements of the surface
one obtains, with z = 0, and using (8.150) in order to express the coefficient in terms of the shear modulus g,

_ 0w Pan [T Ni(Ea) Jo(Er)
2=0: w= . /0 ¢ d¢. (8.159)

This happens to be the same integral as in the exact solution, eq. (8.78). Hence the result is

. 2papy E(r?/a®), r <a,
e=0:w="" { Frtja?). r>a, (8.160)
where
Flz) = Va [B(1/a) — (1 - 1/2) K(1/2)], (8.161)

and where K (x) and E(x) are complete elliptic integrals of the first and second kind, respectively.

v | 1—v n
0.0 | 1.000 | 0.707
0.1 | 0.900 | 0.667
0.2 | 0.800 | 0.612
0.3 | 0.700 | 0.534
0.4 | 0.600 | 0.408
0.5 | 0.500 | 0.000

Table 8.1: Comparison of coefficients.
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It is perhaps remarkable that the approximate solution and the exact solution are of precisely the same form, even though the coefficient
is slightly different, in its dependence upon Poisson’s ratio v. Only in the completely incompressible case, v = 0.5, the approximate solution
degenerates. This could have been expected, because the only possible deformation is a vertical displacement, which is suppressed in an
impermeable material if there are no horizontal displacements. The agreement between the exact elastic solution and the approximate solution
for a confined elastic medium may provide support for a similar approach to problems of elastodynamics.

The only difference between the exact solution, as given by eq. (8.79), and the approximate solution (8.160) derived here, is in the coefficient
of the solution. In the exact case this coefficient is 1 — v, and here it is found to be 7, where 1 is defined by (8.150). These two coeflicients
are compared in Table 8.1. The exact solution appears to give somewhat larger displacements than the approximate solution. This is a general
property of approximate solutions obtained by a constraint on the displacement field. The material appears to be somewhat stiffer because of
the constraint that there can be no horizontal displacements. Or, as Westergaard stated in his original publication (Westergaard, 1936), because
the material has been reinforced by horizontal inextensible sheets.

The vertical normal stress o, is, with (8.146) and (8.158),

Uzz/p
K 0.5 1 O o0
— _ / 0 J1(£a) exp(—€nz) Jo(€r) d. (3.162)
_— b 0

/ For » = 0, that is along the vertical axis, this reduces to

/ r=0 : O;Z = —/ a Ji(€a) exp(—€nz) d€. (8.163)
0
z/a 5’ This integral can be found in a table of Laplace transforms (Churchill, 1972). The result is
Ozz nz

r=0: =—14+ —. 8.164
P [a2 + 222 ( )
This function, illustrated in Figure 8.13, has the same properties as the exact solution given
in equation (8.84), see also Figure 8.9. It is not the same, however. One of the major differences

10 is that the present solution depends upon Poisson’s ratio. Another difference is that in this
. approximate solution the stresses tend to zero much faster than in the complete elastic solution.
Figure 8.13: 0, for r =0 (v = 0).
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8.6.2 A plane strain problem
For a case of plane strain deformation in the x, z-plane the basic differential equation is
Pw 0w
2
—+ == =0 8.165
T o T 52 =0 (8.165)
where 7 is a parameter depending upon Poisson’s ration, see equation (8.150).
If the load is a uniform load on a strip of width 2a, the boundary condition is, with (8.146),
3w -Dp, |£L’| < a,
z2=0: (A4+2u)— = 8.166
( 2 0z { 0, |z|]>a. ( :
Because of the symmetry of the load, the Fourier cosine transform seems to be appropriate in this case,
W(a,z) = / w(x, z) cos(ax) dz. (8.167)
0
The differential equation (8.165) now can be transformed into
d*wW
. AW =0, (8.168)
The solution vanishing at infinity is
W = Aexp(—anz). (8.169)
The constant A can be determined using the boundary condition (8.166). The final result is
p  sin(aa) exp( ) (8.170)
= xp(—anz). .
nA+2u a2 PAman
Inverse transformation gives
2p /°° sin(aa) cos(ax)
= exp(—anz) da. 8.171
s | L p(-a2) (3.71)
The vertical normal stress o, is of particular importance. This is found to be
. = _2p [ sin(aa) cos(ax) exp(—anz) do, (8.172)

™ Jo «
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or

. p /oo sinfa(z 4+ a)] — sin(a(z — a)] exp(—anz) da. (8.173)
7 Jo a

The integrals have the form of Laplace transforms, with ¢ replaced by a. They can be evaluated using a table of standard Laplace transforms.
This gives

Ouz = —B{arctan(x + a) - arctaun(gj — a)}. (8.174)
i nz nz
Comparison of this result with the solution of the complete elastic problem, see equation (8.62), shows that there is a certain similarity of the
solutions. Again, the approximate solution using Westergaard’s approximation appears to depend upon the value of Poisson’s ratio, whereas the
solution of the complete elastic problem is independent of Poisson’s ratio, at least as far as the stresses are concerned. The boundary condition
(8.166) is exactly satisfied, of course.

The case of a line load can be obtained by taking the width of the load a — 0, with F' = 2pa. The simplest way to derive the vertical stress
0., for this case is by starting from equation (8.172), which then becomes

F o0
Oy = ——/ cos(ax) exp(—anz) da. (8.175)
™ Jo

This is an elementary Laplace transform, see table A.1 in Appendix A. It follows that

Fnz

_—— 8.176
m(x? + n?22) ( )

Ozz =

This can be compared with the exact result given in equation (8.50).



Chapter 9

ELASTODYNAMICS OF A HALF SPACE

An important and useful basic problem for the analysis of the propagation of waves in soils is the problem of an elastic half space loaded at
its surface by a time-dependent load, see Figure 9.1. The load may be fluctuating sinusoidally with time, or it may be applied in a very short

time, and then remain constant. For the case of a concentrated pulse load
the solution has first been given by Lamb (1904), and later by others, such as
Pekeris (1955) and De Hoop (1960). All these solutions are mathematically
rather complex, however. Therefore in the next chapter a simplified approach
will be followed, in which the elastic problem is approximated by disregarding
the horizontal displacements, and thus considering vertical displacements
only. This approximation was first suggested by Westergaard (1936), and
is denoted as confined elasticity in this book. It has been shown in the
previous chapter that this approximate method gives very good results for
the elastostatic problems of the same type. The extension to problems of
elastodynamics was first suggested by Barends (1980). It will appear in the
next chapter that in the case of elastodynamics the most important aspects
of the solutions, such as the magnitude of the vertical displacements, and
the effect of damping, can be approximated reasonably well. The solution of
these problems will be used as basic elements for the analysis of foundation
vibrations in chapter 15.

I v

z

Figure 9.1: Half space.

In later chapters the complete solution of some problems of elastodynamics of a half space (or a half plane) will be presented, using methods
developed by Pekeris (1955) and De Hoop (1960). These include the solutions for a line load and a point load on the surface of an elastic half

space.

As an introduction to the chapters in which the solutions of particular problems are presented, this chapter presents some general aspects of
the propagation of waves in homogeneous elastic media. A brief introduction is given of compression waves and shear waves, which are important
waves that appear in the solution of many problems. Also a general description is given of Rayleigh waves, which appear in problems for a half

space, and which are mainly responsible for the damage caused by earthquakes.

181
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9.1 Basic equations of elastodynamics
The basic equations of elastodynamics are the Navier equations, extended with an inertia term. These equations are
Oe O%uy,
A+ p) Uy = < 9.1
A+ p)o +uViue =p—ps (9.1)
Oe 0*u
(A+ M)@ +uViu, = PaTva (9.2)
Oe 0%u
A — 4+ uVu, = z 9.3
A+ p)g +uVu: = p—s (9-3)

where p is the density of the material, and ¢ is the time. The static versions of these equations have been derived in chapter 8.

The stresses can be expressed into the displacement components by the generalized form of Hooke’s law. For an isotropic material the
expressions for the normal stresses are

Ouy

Opz = A&+ 2u e (9.4)
0
Oyy = Ae + 2/16%’7 (9.5)
Ou,
Ozz = Ae + 2M aqi ’ (96)
and the expressions for the shear stresses are
Ouz ~ Ouy
z ; 9.7
ou Ou,,
oys = 15 9 ), (9.8)
ou ou,
o0 = i 8; 8;) (9.9)

Bl T iy (9.10)
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9.2 Compression waves

A special solution of the basic equations of elastodynamics can be obtained by differentiating the first equation of motion, eq. (9.1) with respect
to x, the second one with respect to y, the third one with respect to z, and then adding the result. This gives

0%

A+ 2u)Vie = p—. 9.11
(A +21)Vie = pos (9.11)
This is the classical form of the wave equation. It has solutions of the form

e = f1(r — cpt) + fo(r + cpt), (9.12)

where r is the direction of the wave, and ¢, is the velocity of the wave,

cp =V (A +2u)/p. (9.13)

These waves are called compression waves, or simply P-waves.

9.3 Shear waves

Another special solution of the basic equations of elastodynamics can be obtained by differentiating the first equation of motion, eq. (9.1) with
respect to y, the second one with respect to x, and then subtracting the result. This gives

0w
MVway =p 3t;y’ (9.14)
where w,,, is the rotation about the z-axis,
ou ou
iy = (G = 52 (9.15)
Similar equations can be obtained from other combinations, namely
02w,
NVQWyz =p atgy ) (9.16)
82 zZT
1V 20w, ~ (9.17)

=
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Again equations of the form of the wave equation are obtained. For these rotational waves, or shear waves, or simply S-waves, the propagation
velocity is
Cs =/ 1/ p- (9.18)

Comparison with (9.13) shows that the velocity of the shear waves in general will be smaller than the velocity of the compression waves. The
P-waves and S-waves play an important part in seismology. From the arrival time of these waves the dynamic properties of the material may be
derived.

9.4 Rayleigh waves

The possibility of elastodynamic waves propagating along the surface of an elastic half space was first considered by Rayleigh (1885). This is
a wave that propagates near the free surface of an elastic half space, and is strongly decreases exponentially with depth. Derivations of the
Rayleigh wave solution can be found in many textbooks on soil dynamics and earthquake engineering (e.g. Kolsky, 1963; Richart, Hall & Woods,
1970; Das, 1993; Kramer, 1996). In this chapter the derivation mainly follows the method used by Achenbach (1975).
It is assumed that a solution of the basic equations of elastodynamics can be represented by the following expressions for the displacements
of a wave in the z, z-plane (see Figure 9.1),
uy = Aexp(—bz)sin[k(x — ¢, 1)), (9.19)

u, = Bexp(—bz) coslk(z — ¢ t)], (9.20)

where k is a given constant, and b and ¢, are as yet unknown parameters. It is assumed that b > 0, so that the displacements tend towards
zero for z — o0o. The constants A and B are also unknown at this stage. The displacements in the direction perpendicular to the x, z-plane are
assumed to vanish, and the other two components are assumed to be independent of y. It should be noted that in this solution, if it is found to
exist, the amplitudes of the displacement components are independent of the lateral distance .

Substitution of the equations (9.19) and (9.20) into the basic equations in z- and z-direction, see (9.1) and (9.3), gives

[26° — (2 — K] A+ (¢} — 2)kbB =0, (9.21)

—(ep — kDA + [cpb* — (¢ — )k*]| B = 0, (9.22)

where ¢, and ¢, are the velocities of compression waves and shear waves, respectively, as defined by equations (9.13) and (9.18). A solution of
this system of equations is possible only if the determinant of the system is zero. This leads to the condition

2 2

(B - ENE) - (255)] -0 029
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If it is assumed that ¢, < c; < ¢, this equation has two solutions, b; and by, where
bi/k=+/1-c2/c2, (9.24)
bafk = /1= c2/c2. (9.25)
It now follows from equations (9.21) and (9.22) that for these two solutions
Bi/A; = by /k, (9.26)
As /By = by k. (9.27)

These relations can most conveniently be satisfied by writing A1 = kCy, By = b1C, As = boCy and By = kCy, where C7 and Cy now are the

unknown constants of the two solutions. The total solution can then be written as
Uy = [kCl exp(—b1z) + b2Co exp(—bgz)] sin[k(z — 1)),

u, = [b1Cy exp(—by12) + kCo exp(—baz)] coslk(z — ¢,t)].

The solution is supposed to be applicable to the region near the free surface of a half space. Thus, the boundary conditions are
z2=0: 0,, =0,

z2=0 : 0y, =0.

Using the relations (9.6) and (9.9) these boundary conditions lead to the equations
(2—c2/cH)CL +2\/1 —c2/c2Cy =0,
2y/1—c2/c2Cr+ (2 —c2/c2)Cy = 0.

This system of equations will have a non-zero solution only if the determinant of the system is zero. This gives

2— /2 —aT=2 22 1= =0,

where
n*=ctfep=(1-2v)/[2(1 - v)].

The Rayleigh wave velocity ¢, can be determined from the condition (9.34).

(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

(9.35)
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A simple way to determine this value is to write p = ¢2/c2. It then follows from (9.34) that
(2p — 1) = 16p*(p — 1°)(p - 1), (9.36)
or
16(1 —n*)p® —8(3 — 2n*)p* +8p — 1 = 0. (9.37)

This is a cubic equation, for which an analytical method of solution is available (see e.g. Abramowitz & Stegun, 1964, p. 17). This will show
that there is only one real solution. This solution can also be derived in an approximate way by noting that it can be expected (and follows
from the analytical solution) that p = 1 + a, where a < 1. Equation (9.37) then gives

ala+ 121 —nHa+ (1-20*)] =1/8, (9.38)
or, using the definition (9.35) of the parameter 72,
1—v
8(1+a)(v+a)

If v is sufficiently large, the value of a can be detemined iteratively, from this equation, starting from an initial small value, say a = 0.01.
For small values of v, say v < 0.1, it may be more effective to write v + a = a(1 + v/a), so that

a =

(9.39)

1—v
= STty (940)

which can be used to determine the value of a iteratively, starting from the same inital estimate, a = 0.01.
Once that the value of a has been determined, it follows that p = 1 + a, and thus

c 1
L= ) 9.41
o T (9.41)

A function (in C) to calculate the value of ¢,/cs as a function of Poisson’s ratio is shown below.

double crcs(double nu)
{
double a,b,e,f;
e=0.000001;e*=e;f=1;b=0.01;
if (nu>0.1) {while (f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a));f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8*(1+a)*(1+nu/a)));f=fabs(b-a);}}
return(1/sqrt(1+a));
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A graphical representation of the ratio of the velocities of Rayleigh waves and
shear waves is shown in Figure 9.2.

v cr/cs Cp/Cs 0.95
0.00 | 0.874032 | 1.414214
0.05 | 0.883695 | 1.452966

0.10 | 0.893106 | 1.500000 0.90
0.15 | 0.902220 | 1.558387 .
0.20 | 0.910996 | 1.632993 I
0.25 | 0.919402 | 1.732051 0.85

0.30 | 0.927413 | 1.870829
0.35 | 0.935013 | 2.081667
0.40 | 0.942195 | 2.449490
0.45 | 0.948960 | 3.316625 0.80
0.50 | 0.955313 00

Some numerical values are shown in the table. The table also gives the 0.75 = — ——

values of ¢,/cs, the ratio of the velocities of compression waves and shear 0.0 0.1 0.2 0.3 0.4 0.5
v

waves.

Figure 9.2: Velocity of Rayleigh waves.

The relation between the two coefficients C; and Cy in the solution can be obtained from either of the equations (9.32) and (9.33). The two
components of the displacements in a Rayleigh wave can then be determined from the equations (9.28) and (9.29). This results in the following
expressions for the two displacement components

uy = kCy [exp(—pikz) — 3(1 + B3) exp(—Bakz)] sin[k(z — ¢, 1)), (9.42)
u, = kCo[exp(—Bakz) — L(1+ B3) exp(—B1kz)] cos[k(z — c,t)], (9.43)

where
p1="bi/k=+/1-c}/c2, (9.44)

P2 =ba/k =+/1—c2/c2, (9.45)
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and where the constants C; and C5 are related by the condition

Co/Cy = —(1+ 533)/202. (9.46)

The amplitudes at the surface z = 0 are
z=0 : |ux|=k|01\[1—%(1+ﬂ§)}, (9.47)
z2=0 : |u| =k|Co|[l — (1 + 53)], (9.48)

which shows that the amplitude of the vertical displacement at the surface is larger than the amplitude of the horizontal displacement, because
|02‘ > |Cl|

Ug [Uo Uz /Uo
Figure 9.3: Displacements for Rayleigh wave.

For three values of Poisson’s ratio v the amplitudes of the displacements are shown, as a function of z/L, where L is the wave length, L = 27 /k.
The vertical displacement at the surface, indicated by ug, is used as a scaling factor.
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9.5 Love waves

In a non-homogenous elastic material, such as a material consisting of various horizontal layers (a common occurrence in nature), compression
waves and shear waves may be reflected and partly transmitted on the interfaces, as was illustrated for the one-dimensional case in Chapter 3.
Successive reflections on the two sides of a thin soft layer on top of a stiffer subsoil may lead to a special type of wave, the Love wave. At the
interface of two solids with certain properties a Stoneley wave may be generated. This resembles a Rayleigh wave in the sense that it is confined
to the vicinity of the interface. For soil mechanics practice the Love wave is especially relevant. Therefore this wave will be considered in some
detail here. For the Stonely wave see e.g. Ewing et al. (1957), Cagniard et al. (1962), Achenbach (1975).

The simplest case of a Love wave occurs in a thin soft layer on a relatively stiff half space, see Figure 9.4. It is assumed that the only
non-vanishing displacement is a displacement v = v(z,z,¢) in the y-direction, that is the direction perpendicular to the plane in which

the wave propagates.
The basic equations are

X
0% 0% 0%
0 ho: —:—(— —) 9.49
SES ot py \0x? 022 (9.49)
v g 0%v 0%
>h —:—(— —) 9.50
* ot2 p2 \0z? + 022 ( )
where p17 and po are the shear moduli of the layer and the base rock, respectively,
and p; and py are their densities.
It is assumed that the solutions can be written in the form
z 0<z<h : v=[Aexp(A1z)+ Bexp(—A12)]sinjw(t — z/c)], (9.51)

Figure 9.4: Soft layer on half space.
z>h : v=[Cexp(Aaz) + Dexp(—A2z)]sinfw(t — x/c)], (9.52)

where the frequency w is supposed to be given, but where the propagation velocity ¢ and the parameters A\; and Ao are unknown.
Substitution into the basic equations shows that a solution may be obtained if ¢; < ¢ < ¢2 and

w2 w2

2

Al = _(g - 07)7 (9.53)

A2 — (ﬂ _ “’:) (9.54)
2 C2 C% ) .

where the terms between brackets are positive.
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The boundary condition at the free surface is that the shear stress is zero, so that

ov

=0: — =0, 9.55
z o (9.55)

and the condition at infinity is that the solution tends towards zero,
z—00 @ v—0. (9.56)

Using these conditions it follows that the solution reduces to
0<z<h : v=Acos(wz\/1/c} —1/c?)sin[w(t — z/c)], (9.57)
z>h : v=Dexp(—wz\/1/c* = 1/c})sinfw(t — z/c)]. (9.58)

The conditions at the interface z = h are that the displacement and the shear stress are continuous. The first condition leads to the equation

Acos(why/1/ct —1/c?) = Dexp(—why/1/c? —1/c3). (9.59)

And the second condition leads to the equation

— A1/} —1/c? sin(why/1/c} = 1/c?) = —paD~\/1/c? — 1/c3 exp(—why/1/c* —1/c3). (9.60)

This system of equations has a non-zero solution only if the determinant of the system of equations is zero. This gives

wh paca  [c2/ct —c2/c?
tan(— /1 —c?/c?) = V2 L. 9.61
an( c1 Cl/c ) pic1 Cz/c% -1 ( )

This equation contains two given parameters : ca/c; and wh/c;. The unknown value of ¢/c¢; can be determined by determining the intersection
point of the two functions in the left and right hand side, respectively.

The procedure is illustrated in Figure 9.5, for the case ¢2/c¢; = 5 and for two values of the dimensionless frequency : wh/c; =1 and wh/c; = 8.
It has been assumed that the densities of the two layers are equal. The location of the intersection point of the two curves indicates that the
value of the Love wave velocity c¢ in the first case is very close to ¢z, the shear wave velocity in the deep layer. This will be found for all values
of wh/c; < 1. Tt means that for slow vibrations the velocity of the shear waves in the deep layer dominates the velocity of the Love wave in the
upper layer.
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100

fle/er)

c/c1

100

fle/er)

b

c/er

Figure 9.5: Determination of the velocity of a Love wave, ca/c; = 5; wh/cy =1 (left), wh/c; = 8 (right).

For high frequencies, say wh/c; > 4, the first zero is close to ¢ = ¢;, but there may be several possible solutions in the range ¢; < ¢ < ¢o. In
the case wh/cy = 8, shown in the right part of Figure 9.5, there appear to be three solutions. For larger values of the frequency the number of

zeroes further increases.

The velocity of the (first) Love wave is shown as a function of the frequency w in Figure 9.6, for three values of the parameter co/c;. For
high frequencies the value of ¢ approaches ¢y, and for small frequencies it approaches co, as mentioned before.

9.5.1 Practical implications

For geotechnical engineering an interesting situation is a soft layer of limited thickness on top of a hard rock of great thickness, in which an
earthquake wave is generated. A normal value for the density of the rock is pa = 2500 kg/m? and a normal value for the density of the soft soil
is p; = 2000 kg/m3. The shear modulus of the rock may be as large as yp = 10 MPa = 10 x 10° kg/ms?. This means that the velocity of shear
waves in the rock is about ¢z = 2000 m/s. The shear modulus of the soft soil is of the order of magnitude p; = 20 kPa = 20 x 10° kg/ms?, so
that the velocity of shear waves in the top layer is about ¢; = 100 m/s. Thus the ratio of the shear waves is about ca/c; = 20.



Arnold Verruijt, Soil Dynamics : 9. ELASTODYNAMICS OF A HALF SPACE 192

10

c/c1

C2

C2

wh/cq

Figure 9.6: Velocity of Love wave.

The frequency of earthquake vibrations is of the order of magnitude w = 30 s~!, indicating a period of about T' = 27 /w ~ 0.2 s. For a layer
of 20 m thickness the parameter wh/c; now is about 6, which is large enough to conclude that several modes of Love waves will be possible,
one with ¢ &~ ¢; and one approaching co. Considering a Love wave for which ¢ & co, the solution for the displacements in the top layer is, with

equation (9.57),
0<z<h :v=Acos(wz/1/c} —1/c3)sinfw(t — z/cs)], (9.62)

or, because co > c1,
0<z<h :v=Acos(wz/c1)sinfw(t —x/cz)]. (9.63)

This is precisely the expression (3.16) used in chapter 3. It appears that the approximate solutions considered in that chapter can be considered
as approximations of a Love wave.



Chapter 10

CONFINED ELASTODYNAMICS

For a particular problem of elastodynamics, characterized by its boundary conditions, the basic equations are often very difficult to solve, both
analytically or numerically. Some insight can be obtained by studying special solutions, such as those describing compression waves and shear
waves. Another way of gaining some insight into the dynamic behaviour of an elastic continuum is to simplify the problem by an appropriate
restriction on the displacement field. For this purpose it will be assumed here that the two horizontal displacements are so small compared to
the vertical displacement that they may be neglected. This assumption was first proposed by Westergaard (1938) for problems of elastostatics,
and has been used in Chapter 8. The generalization to problems of elastodynamics was first made Barends (1980). Problems solved under these
assumptions will be referred to as confined elastodynamic problems in this chapter.
The basic assumptions are

g = 0, (10.1)
wy =0, (10.2)
u, = w(z,y, ). (10.3)

The vertical displacement will be denoted by w, for simplicity.
Using these assumptions the only remaining basic equation is the equation of vertical equilibrium, which now requires that

9w 0%w 9? 0w

w

The remaining relevant stress components are the stresses on horizontal planes. They are related to the vertical displacements by the equations

ow
= 2 B 10.
0= (A + M)aza (05)
ow
zr — 5 10.
0o = i (10.6)
ow
y — UW—. ]..
o= (10.7)

193
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10.1 Line load on half space

As a first example consider the problem of a line load as a step in time. The load is applied in a very short time, at time ¢ = 0, and then
remains constant, see Figure 10.1. In this case of a line load, with the line following the y-axis, the vertical displacement w can be assumed to
be independent of y, so that the basic equation (10.4) reduces to

0%w 0*w 0%w
— + A+ 2U)=— =p—. 10.8
Pz T A2 s = pogm (10.8)
The boundary condition is
ow 0 ift<0
Ozz _ . o ) )
e=0: (A+2u)5-= { —P§(z), ift>0, (10.9)
where 6(z) is a function that is everywhere zero, except in the
origin, where it is infinitely large, such that the integral over x
ot is 1, whenever the origin is included, i.e. for all positive values
of a,
“+a
Figure 10.1: Step load. [ o(z) dv = 1. (10.10)

The dimension of P is [F]/[L], i.e. kN/m in SI-units.
The initial condition is supposed to be that before ¢ = 0 the displacement w and its derivative (the velocity) are zero,

t=0: w=0, (10.11)
ow

= T = . 112

t=0: 5 =0 (10.12)

The problem can be solved by using the Laplace transform method (see e.g. Churchill, 1972). The Laplace transform of the displacement w is
defined by

w = / w exp(—st) dt, (10.13)
0

where now w is a function of the Laplace transform parameter s as well as the spatial variables z and z.
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Applying the Laplace transformation to the differential equation (10.8) gives

0*w 0*w

— pel7m
poma A+ 20) o = ps™w, (10.14)
and the transformed boundary condition is
ow P
-0 : 2 = —Z §(2). 10.15
2=0: (205 = == () (10.15)

The partial differential equation (10.14) can be solved by the Fourier transform method (see e.g. Sneddon, 1961). The Fourier transform is
defined by

+oo
W= / w exp(iax) d, (10.16)
and the general inversion formula is given by the fundamental theorem of the theory of Fourier transforms (Sneddon, 1961),
I
w= by W exp(—iaz) da. (10.17)
T J-—o

Applying the Fourier transform to the differential equation (10.14) gives

_ 2w _
—pe®W + (A +2p) — = ps®W, (10.18)

which is an ordinary differential equation. After some rearranging it can also be written as

d*W —
i V2n*W, (10.19)
where
v? =a? + 5%/, (10.20)
and 19
e i (10.21)

T x+2n 20-v)

The parameter c; is the velocity of shear waves in the medium,

2 _ M
c:==. (10.22)
P
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The solution of eq. (10.19) vanishing at infinity is

W = Aexp(—ynz). (10.23)
The Fourier transform of the boundary condition (10.15) is
z=0: (A+2 )dW P exp(iax)dx P (10.24)
= : _ = = X = ——. .
K4z 2es J_, P 5
From this condition the constant A can be determined,
A= P (10.25)
n(A+2p)sy’ '
so that the final solution of the transformed problem is
w P exp(—m2) (10.26)
= —————exp(— . .
n(A +2u)sy

In principle the problem is solved now. What remains is to evaluate the inverse Fourier and Laplace transforms, which in general may be a
formidable mathematical problem.
In this case the Fourier inverse of the expression (10.26) can formally be written as

P +oo _ 7 G272
. / exp[—nzy/a? + s2/c2] exp(—iaz)da, (10.27)
2N+ 2p)s J_ o Va2 +s2/c2

or, because the integrand is even,

gl

P o0 oS oZ 52/ 2
/ expl=nzya? + 57/ cos(azx)da. (10.28)
(A +2p)s Jo Va2 +s?/c?

It remains to evaluate this integral, and then to perform the inverse Laplace transformation.
The integral (10.28) happens to be a well known Fourier transform (Erdélyi et al., 1954, 1.4.27). The result is

P
T=—  Ko(Z\/22 1 222), (10.29)

™A +20)s e

where K(z) is the modified Bessel function of the second kind and order zero.
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The inverse Laplace transform of the function (10.29) is also well known (Erdélyi et al., 1954, 5.15.9). Thus the final expression for the

vertical displacement is
P

= ) arccosh(t/to) H(t — to), (10.30)

where t( is the arrival time of the wave, taking into account the apparent scale transformation of the vertical coordinate,

2 2,2
VTt (10.31)

to = )
Cs
and H(t — tg) is Heaviside’s unit step function,
o 0, ift<ty,
H(t —to) = { TN (10.32)

In view of the complexity of the original function (10.28) the simplicity of the final result (10.30) is perhaps surprising.

If the Laplace transform of the vertical normal stress o, is defined as
[ :/ 0., exp(—st) dt, (10.33)
0

then the solution for 7., is, because 7., = (A + 2u)dw/dz,

P o0
oy = —— exp[—nzy/a? + s?2/c2] cos(ax)da. (10.34)
0

™8

Again this integral is a well known Fourier transform (Erdélyi et al., 1.4.26). The result is

P nz s
5= K2 2 2,2), 10.35
o e T 1(68\/90 +n?22) ( )

where K (x) is the modified Bessel function of the second kind and order one.
The inverse Laplace transform of the expression (10.35) is, with (5.15.10) from Erdélyi et al. (1954),

P Nz t

—— H(t — tg). 10.36
T .’L‘2+7’]22’2 t2*tg ( 0) ( )

Ozz =
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This is the final expression for the normal stresses in the half space. Of course, this formula can also be obtained from equation (10.30) by direct
differentiation, using the simplified form of Hooke’s law, equation (10.5). The value of ¢y, the arrival time of the wave, is defined by (10.31).
A quantity of great practical interest is the vertical velocity, dw/dt. This is found to be, after differentiation of equation (10.30),

ow___ P L Hi— 1), (10.37)

ot mp(Z+2u) 2= 2

At the moment of arrival of the wave this is infinitely large, indicating the passage of a shock. A certain time after this passage, say at t = to+ At,
the velocity is, approximately, assuming that At < tg,

ow P 1
ot (N +2p) V2toAL

As the travel time tg is a linear function of the distance from the source of the disturbance, see eq. (10.31), this means that the velocities after
the passage of the shock are smaller at greater distance from the source, inversely proportional to the square root of the distance.

It should be noted that, although certain characteristics of the complete elastodynamic solution are obtained, the solution of the present
problem is rather different from the true solution of the elastodynamic problem for the line load on a half space. In this complete solution
(which is presented in Chapter 11), three waves can be distinguished : a compression wave arriving first, then a shear wave, and slightly later
the Rayleigh wave. This is the most important wave, because in two dimensions its magnitude remains constant, without any attenuation. After
an earthquake the main damage away from the source of the disturbance is caused by the Rayleigh wave.

t=to+ At :

(10.38)

10.2 Line pulse on half space

The solution for the case of a line pulse, that is a line load of very short duration, see Figure 10.2, can be derived from the solution for the previous
case by replacing the boundary condition (10.9) by the condi-

tion
O-ZZ

0
2=0: (A+ QM)% = —Qi(t)s(). (10.39)
which may be considered as the time derivative of the bound-
¢ ary condition in the previous problem. In order for the formu-
las to be dimensionally correct, the dimension of ) should be
[F][T]/[L], i.e. kNs/m in SI-units.

Figure 10.2: Line pulse.
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Because differentiation with respect to time corresponds to multiplication of the Laplace transform space by s, the solution of the present
problem in Laplace transform space can be obtained from the previous solution by multiplication by the parameter s.
In particular, the solution for the Laplace transform of the vertical displacement now will be, multiplying the solution (10.29) by s,

= — 9 k(S Erna), (10.40)

™A +2p) e
It now remains to perform the inverse Laplace transformation. Using the formula (5.15.8) from Erdélyi et al. (1954) one obtains

w9 L Hit— 1), (10.41)

(A +2p) /12— 2
where tg is the arrival time of the wave, as given by (10.31). This solution can also be obtained from the solution of the previous problem,
eq. (10.30), by differentiation with respect to ¢t. The solution (10.41) was first given by Barends (1980). The derivation of expressions for the
stresses and the velocity is left as an exercise for the reader.

10.3 Strip load on half space

10.3.1 Strip pulse

q The next problem to be considered in this chapter is the case of a strip load on
—a mm +a an elastic half plane, i.e. a constant load over a strip on the surface of the half
plane. As a function of time the load may be a pulse of short duration, or a
load constant in time. The pulse load will be considered first.

The elastodynamic solution to be derived in this chapter should reduce to
the solution for a line load obtained in the previous section, if the width of the
loaded strip (2a) becomes very small.

In this case the boundary condition for the vertical normal stress is

ow —q 6(t)7 if |.’13| <a,
z2=0: 0., =A+2u)— = 10.42
( 2 0z { 0, if || > a. ( )
z The Laplace transform of this condition is

Figure 10.3: Half plane with strip load. ow —q, if |z| <a,
— = (10.43)

= M 2 =
2=0: (A H)az 0, if |z] > a.
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The Fourier transform of this condition is

_ " )
z=0: (A+ QM)Z—W = —q/ exp(iax) dr = _x sin(oa). (10.44)
z

—a @

It is recalled from equation (10.23) that the general solution of the problem for the half plane z > 0 is

W = Aexp(—nzy/a? + s2/c?), (10.45)

where
9 W 1-2v
= = ) 10.46
T N+ 2 20-v) (10.46)

It follows from equations (10.44) and (10.45) that

= 2¢ sin(wa) (10.47)

(A4 2p)nar/a? + s2/c2

The Fourier transform of the solution can be obtained by substituting equation (10.47) into (10.45). This gives

7 2¢  sin(aa)exp(—nzy/a? + s2/c2) (10.48)
T0rw gaverisia |

Inverse Fourier transformation, using equation (10.17), gives

+oo oS oZ 1 522
T=— 1 / sinfaa) exp(—nzya® +5%/c) exp(—iax) da. (10.49)
T(A+2u) J nay/a? + s2/c?

The vertical normal stress is of particular importance, and probably easier to determine. Its Laplace transform is, because 0., = (A+2u)0w/dz,

Foo _ T g2/ 2
q/ sin(aa) exp(—nz+/a? + s2/c2) exp(—iaz) da. (10.50)

Ooz = ——
«

T J-x

The final mathematical problem now is to determine this integral, and then find the inverse Laplace transform. This can be accomplished by a
transformation of the integral, using De Hoop’s method (De Hoop, 1960).
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10.3.2 Inversion by De Hoop’s method

The first step is to replace the Fourier parameter a by sa, so that equation (10.50) can be written as

+oo o;
T, = 4 / sin(aas) exp|—s(iax + knz)| da, (10.51)
™ o

— 00

where k is defined by
k=+/1/c2 + a2 (10.52)

Following a suggestion by Stam (1990), the function sin(aas) can be brought into the exponential function by using the relation

sin(aas) = exp(iaas) —2'exp(—zaas). (10.53)
i

This gives B

O—ZZ

= g(fE + CL,Z,S) - g(l’ - (Z,Z,S), (1054)

where

1 /+°° exp[—s(iax + knz)] o

2 J_ «

g(z,z,8) = (10.55)
This integral will be evaluated, for positive or negative values of x.

It may be noted that the Laplace transform parameter s occurs only once in equation (10.55), as a factor in an exponential function. It will
be attempted to transform the integrand so that the factor (iax + knz) is replaced by ¢, which then indicates a Laplace transform.

The integration parameter « is now replaced by p, such that p = ic. Equation (10.55) is then transformed into

1 / 1% exp[—s(px + knz)]

g(z,2,8) = — dp, (10.56)

B 2mi —100 p

where now
k= /T Z = . (10.57)

The next step is to transform the integration path in the complex p-plane, see Figure 10.4. Two branch cuts are needed, to avoid multiple
values for the parameter k. The branch points are located at the points p + 1/c¢s. It is most convenient to let the branch cuts follow the real
axis, as indicated in the figure. The case x > 0 is considered first.
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3(p) It is assumed that along the transformed integration path a real positive
parameter ¢ (time) can be defined as
p3 D1 t = px + knz, (10.58)
It follows from equations (10.57) and (10.58) that
/ / k* =1/ —p* = (t* = 2tpx + p*a?) /0?22, (10.59)
—1 Cs 1 Cs
R(@) or
r2p? — 2txp — n?2?/c?, (10.60)
where
P4 D2
r? =2 + 0?22 (10.61)
Equation (10.60) is a quadratic equation in p, with the two solutions
tr inz tr  inz
Figure 10.4: Transformed integration paths, for £ < 0 and = > 0. 1= 2 + 2 2 —r2/ct, pa= 2 2V 2 —r?/ct. (10.62)

If it is assumed that along the two parts of the transformed integration path r/cs < ¢t < oo, it follows that on the curve pq, the upper half of
the integration path, the value of p varies from the real value p = x/rc,, if t = r/cs, to a complex value p = (x + in2)t/r?, if t — co. The point
p = x/rcs is always located between the origin and the branch point p = 1/c;, if & > 0, which is assumed here.

The transformation of the integration path from the original path along the imaginary axis to the path consisting of the curves py and p;
in Figure 10.4 is permissible if the contributions of the parts along a closing contour at infinity vanish. This will indeed be the case if > 0,
because in the factor exp(—spzx) in equation (10.56) the parameters s, (p) and x are all positive and p — oo at infinity. The transformation of
the integration path also requires that there are no singularities between the two paths. This means that it must be assumed that the pole at
p = 0 in the integrand of equation (10.56) is located just to the left of the original integration path.

It follows from equations (10.62) that along the paths p; and py

d ' t d j t
pL_2 mr v L/ S— (10.63)

dt 22 g2 a2 2 g2

so that, after some elementary operations,

dpi/dt  t\/t? —r2/c2 +inxz/c? dpa/dt — t\/t? —r2/c2 —inxz/c?
D1 (t2 —n222/c2)\ /12 —r2/c2" D2 (t2 —n222/c2)\/t2 —r2/c2’

(10.64)
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which are complex conjugates.
Substitution into the integral (10.56) now gives, taking into account that the transformed integration path consists of the two branches p;
and po, with the integration path on p; from ¢ = r/cs to t = 0o, and on py from t = co to t = r/cs,

SARECERE / . e exp(—st) dt (10.65)
. y 2, = — X _ 7 .
’ N e N e
or y
1 [~ nrz/c
z>0: g(x, 2,8 :7/ s H(t —r/c.) exp(—st) dt. 10,66
q( ) T Jo (2 _77222/63)\/752_77’2/03 ( /cs) exp(—st) ( )

where H(t — r/cs) is Heaviside’s unit step function.
The integral (10.66) has the form of a Laplace transform, which was the purpose of the transformation of the original Fourier integral (10.55).
Inverse Laplace transformation now leads to

' 1 nwz/c?
x>0 : gz, z1) T n222/6§)\/mH(t r/cs). (10.67)
If x < 0 the integration path must be transformed by moving the integration path to the left, see Figure 10.4, in order that the contributions
by the arcs at infinity vanish. This means that the pole at p = 0 will be passed, resulting in a contribution to the integral. In the figure the
transformed integration path is indicated by the curves p3 and p4, with a loop around the pole. It can be shown that the result of the integration
along ps and ps4 will be the same as before, see equation (10.67). However, to this expression the contribution by integrating around the pole
must be added. Along this path the integration variable p is

p = eexp(if), (10.68)

where ¢ — 0, and the angle 6 runs from # = —7 to § = +7 along the small circle around the pole. This contribution can be determined
by considering the limiting value of the Laplace transform g(z, z, s), as defined in equation (10.56), for p — 0. This leads to an additional
contribution

AG(x, z,8) = exp(—snz/cs){1 — H(x)}, (10.69)

where the factor 1 — H(x) has been addded to indicate that this contribution applies only if z < 0. Inverse Laplace transformation of equation
(10.69) gives
Ag(x,z,t) =6t —nz/cs){1 — H(x)}. (10.70)

The results for £ > 0 and £ < 0 can be combined in the single formula

nrz/c

1
T (82— P22 )\ PR

g(z,z,t) = H(t—r/cs)+0(t —nz/cs){1 — H(x)}. (10.71)
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For the calculation of numerical values it is convenient to introduce the dimensionless parameters
E==xfa, (=z/a, T =cst/a, p=+/E+ (% (10.72)
Using these parameters equation (10.71) can be written as
g(x,z,t) = h(&, ¢, 7)/ta + AR(E,(,T) /tas (10.73)
with ) e
n
h(&, ¢, m)=— H(r —p), 10.74
(6T = 1 ey e ) (10.74)
Ah(&, ¢, 7) = 6(r —n¢O{1 — H(E)}. (10.75)
In equation (10.73) t, is a reference time, defined as
ta = ajcs. (10.76)
It has been assumed that 0(t — nz/cs) = (1/ta)d(r — n¢), because both delta functions should have an area equal to 1,
“+00 “+oo o0
/ 5(t—nz/cs)dt:ta/ 5(t—nz/cs)d7':/ d(r—n¢)dr =1. (10.77)
Using equation (10.73) the expression for the vertical normal stress, equation (10.54) becomes, after inverse Laplace transformation,
Te = h(f + 17 C)T) + Ah‘(f + 17 CaT) - h(f - 1) CaT) - Ah(& - 1) CaT)a (1078)
where o, is a reference stress, defined as
0o = q/te = qcs/a. (10.79)

It may be noted that the physical dimension of ¢ is a stress multiplied by time, because the physical dimension of the delta function §(¢) in the
boundary condition (10.42) is the inverse of time, to ensure that its integral over time is 1. Thus, the physical dimension of o, is indeed a stress,

and 0,,/0, is dimensionless.
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10.3.3 Constant strip load

Oz The second problem to be considered in this section is the case of a strip load

q on an elastic half plane, i.e. a load that is applied at time t = 0, and then
remains constant in time, see Figure 10.5. The solution will be obtained by an

+ integration of the solution of the problem of a strip pulse, considered above,
with respect to the time parameter t.

—a mm +a The elastostatic equivalent of this problem is a classical problem of applied

* mechanics (Timoshenko & Goodier, 1970; Sneddon, 1951). This means that the
confined elastodynamic solutions to be derived in this section should reduce to
the confined elastostatic limit if ¢ — oo. Also, the solution should reduce to the
one obtained for a line load in an earlier section, if the width of the loaded strip
(2a) becomes very small.

In this case the boundary condition is

dw —qH(t), if |z <a,
z2=0 : 0., = (A4+2u)— = 10.80
( 2 0z { 0, if |z > a. ( )
z The Laplace transform of this condition is

Figure 10.5: Half plane with strip load.

z2=0 : (A4 2u) (10.81)

ow —q/s, if |z] <a,
0z 0, if|z]>a.

Compared to the boundary condition in case of a strip pulse, see equation (10.43), the difference is a division by s. In the time domain this
corresponds to integration with respect to time ¢t. The stresses will be evaluated for this case, taking the solution for the strip impulse as the
starting point.

The vertical normal stress is, on the basis of a time integration of equation (10.78),

ng = f(§+ ].,C,T) +Af(£+ 17C7T) 7f(€7 ]-anT) - Af(f* 1a<77—)3 (1082)

where

f(6.Cr) = / h(E,C, k) dr, (10.83)
o

AS(E,C ) = /0 AR, C, ) ds (10.84)
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The factor ¢s/a in the reference value of the stress has been omitted, because dt = (c¢s/a)dk. In the first integral the lower limit of integration
has been set equal to p, because for x < p the actual function contains a factor zero.
It can be verified by differentiation of the right hand side with respect to 7 that

/ ’ : dr _ 1 VT p? (10.85)
p

Y oY Ry

where n¢ < p. With (10.74) this gives

1 /=2 _ 2
£(€¢.7) = = arctan( YT, (10.86)
s TE
where it has been used that p? = £2 + n?¢2.
Furthermore, with (10.75) and (10.84) it follows that

AfE ¢ ) = H(r —nO{1 - H()}- (10.87)

All elements of the expression (10.82) now have been evaluated. This can now be written as

%—larcan ey T—T —larcan USVARs T—T
q 7 tan{ =2y f-l—l) HA( ) T tand =2y T(€-1) HA( 2) +
H(r =nO{H(E - 1) - H( + 1)}, (10.88)

where
m=E+D) 02 = (-1 + ¢ (10.89)
The last term in equation (10.88) represents a block wave just below the load, travelling with the compression wave velocity in vertical direction.
To avoid passages through infinity at £ 41 it is convenient to transform this equation, using the property that arctan(z) = 7/2 — arctan(1/z)
for all positive values of x, and the property that arctan(—x) = — arctan(z) for all values of . This finally gives

0. _ 1 T(€+1)/n¢ 1 T(€—=1)/n¢
. arctan{ﬁ}lf( )+ - arctan{ﬁ}H(T —T2) +
{H(E=1) = HE+ DI (T = n¢) + {H(E+1) = 3 H(T — 1) = {H(§ = 1) = 3} H(T — 72). (10.90)
In terms of the original variables this solution can be written as
Oz _ —larcta {M}H( t1) + %arctan{w}H(t—tg)—l-

q m N V2 —t3

{H(z—a)— H(x+a)}H(t —nz) + {H(z+a) — §}H({t —t1) — {H(x —a) — 3}H(t — t2), (10.91)
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where
t% = {(x+a)2 +7}222}/c§, t% = {(:::fa)2 +77222}/c§. (10.92)

For very large values of time ¢ — oo and the solution reduces to

T+
nz

o 1
T—00 : = —— arctan{
q 7r

}- (10.93)

a 1 r—a
— t
}—l—ﬂarcan{ .

n
This is indeed the solution of the elastostatic (and confined) problem, see equation (8.174).

A function to calculate the value of o, /q for given values of £, {, 7 and Poisson’s ratio v, is given below, in C. In this program the variables
&, ¢, 7 and v are denoted by x, z, t and nu.

double stress(double x,double z,double t,double nu)

{

double s,eta,eta2,tl,t2;

eta2=(1-2*nu)/(2*(1-nu)) ;eta=sqrt (eta2) ;s=0;

tl=sqrt ((x+1) *(x+1)+eta2*z*z) ;t2=sqrt ((x-1) *(x-1) +eta2*z*z) ;

if (t>t1) {s-=0.5+atan((x+1)/((eta*z)*sqrt(1-t1*t1/(t*t))))/PI;if (x+1>0) s+=1;}
if (t>t2) {s+=0.5+atan((x-1)/((etaxz)*sqrt(1-t2*t2/(t*t))))/PI;if (x-1>0) s-=1;}
if (t>=etaxz) {if (x-1>0) s+=1;if (x+1>0) s-=1;}

return(s);

}

Some results have been calculated by a computer program using this function. The stresses below the strip load, as calculated using the present
confined solution are shown in the left half of Figure 10.6, for a region of depth 10a. It has been assumed that the value of time is such that
the compression wave has just reached that depth. The value of Poisson’s ratio has been assumed to be v = 0. At a small depth (z = a) the
stresses are practically equal to the static values. The right half of the figure shows the solution for the full elastodynamic problem, which is
considered in Chapter 12 of this book.

For a different value of Poisson’s ratio, v = 0.499, the stresses for the confined solution are shown in the left half of Figure 10.7. In this
practically incompressible case the compression wave travels down very fast, and it will take (relatively) longer for the stresses to approach
the static values. It may be noted that the material is practically undeformable for v — 0.5. Because it has been assumed that there are
no horizontal deformations, the assumption of incompressibility means that there can be no vertical deformations either. The solution clearly
degenerates for v — 0.5. The exact solution of the full elastic problem is shown in the right half of the figure. The differences with the confined
solution appear to be very large.

In the case v = 0 the differences between the two solutions are not so very large, although the confined solution does not show the effect
of the Rayleigh wave, which is present in the full solution. In the case v = 0.499 the differences are so large that the conclusion must be that
these confined solutions are perhaps interesting from an educational viewpoint, but can not be considered as a serious alternative for the full
elastodynamic solution.
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10

10

Figure 10.7: Stresses below a strip load, v = 0.499, ¢,t/a = 10.
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10.4 Point load on half space

Another important case is that of the sudden application of a point load, see Figure 10.8. In this case the use of polar coordinates is suggested by
the axial symmetry of the problem. The differential equation now is

F
w1 0w 0w 0w
—+ - — A2U) = =p—>. 10.94
X :u(ar2+’l” aT)+( + /1’)622 patg ( )
The boundary condition is supposed to be
Yy
z
ow 0, ift<Oorr>a,
Figure 10.8: Point load on half space. z2=0: (A+ 2“)5 = { —F/na?, ift>0andr < a. (10.95)

where a is the radius of the loaded area, which is assumed to be very
small.
The initial conditions are that before ¢t = 0 the displacement w and its derivative (the velocity) are zero,

t=0: w=0, (10.96)

ow
t=0: — =0. 10.97
5 (10.97)

The Laplace transform of the displacement w is defined by
(oo}
w= / w exp(—st) dt. (10.98)
0

Applying the Laplace transformation to the differential equation (10.94) gives

0w 1 Jw 0*w

u(ﬁ B )+ A+ QM)W = psTw. (10.99)

For radially symmetric problems the Hankel transform is a useful method (Sneddon, 1961). This is defined as

W = /OOET Jo(&r) dr, (10.100)
0
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where Jy(z) is the Bessel function of the first kind and order zero. The inverse transform is

W= /OOWfJO(rg) de. (10.101)
0

The Hankel transform has the property that the operator
0? n 10
or?2  r or
is transformed into multiplication by —¢2. Thus the differential equation (10.99) becomes, after application of the Hankel transformation,
d*w —

—pE2 W + (A +2p) 7 = ps*W, (10.102)

which is an ordinary differential equation.
The transformed boundary condition is, applying first the Laplace transform and then the Hankel transform to 10.95),
dW F

z2=0: (A+2u)— =—

dz Ta?s

/aTJO(@“) dr. (10.103)
0

When a is very small the Bessel function may be approximated by its first term in a series expansion, which is 1, so that one obtains

z2=0 : ()\—&—Zu)dd—vzvz—%. (10.104)
The general solution of equation (10.102) vanishing for z — oo is
W = Aexp(—ynz), (10.105)
with
v =&+ 5%/, (10.106)

and where 7 and ¢, have the same meaning as before, see (10.21) and (10.22).
The integration constant A can be determined from the boundary condition (10.104), which gives

F

B 10.107
2\ 4 2u)ys ( )
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The final solution for the transformed displacement is

— F exp[—nz/& + s°/c3) (10.108)
2mn(A + 2u)s VE +s2/c2 . |

Although this may appear to be a rather complex formula, it happens that its inverse Hankel transform can be found in the literature (Erdélyi
et al., 1954, 8.2.24). The result is

F 1 s
W= exp(——+/72 + n2z2). 10.109

The inverse Laplace transform is very simple (Churchill, 1972),

F 1

w =
2m(A +2p) \/r2 9222

H(t — to), (10.110)

where

2 2,2
fo = VI (10.111)

Cs

Equation (10.110) is the solution of the problem. Again it may be surprising that such a simple solution has been obtained. In this case there
is a downward displacement which occurs at the arrival of the wave. The magnitude of the displacement decreases inversely proportional with
the distance from the source of the disturbance. It may be noted that the steady state displacement, for ¢ — oo, agrees in form with the fully
elastic solution given in chapter 8, see eq. (8.28). The displacement is inversely proportional to the distance from the source in both formulas,
and inversely proportional to the modulus of elasticity E (although that is not very surprising in a linear model). The two formulas differ only
in their respective dependence upon Poisson’s ratio v.

It deserves to be mentioned that the approximate solution derived here, for the case of horizontally confined displacements, markedly differs
from the complete elastic solution (Pekeris, 1955). When considering this complete solution it will appear that shortly after the arrival of the
shear wave considered here very large displacements occur, due to the generation of Rayleigh waves.

10.5 Periodic load on a confined elastic half space
In the previous sections some solutions of problems of wave propagation in a confined elastic half space have been considered, especially for

loads that were applied stepwise. Another important class of problems is that of a half space with a periodic load on its surface. A problem of
this class will be considered in this section, namely the problem of a uniform periodic load over a circular area, on a confined elastic half space.
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As in the previous sections the problem is simplified by assuming that the only non-vanishing displacement is the vertical displacement w,
for which the differential equation then is, in the case of radial symmetry,

w 10w 0w 0%w
M + ) T A2 GE = e

In the problem to be considered the load is a periodically varying load on a circular area at the surface, see Figure 10.9. The boundary condition

I ,

(10.112)

0, ift<0orr>a,

—p sin(wt), if¢t>0andr <a. (10.113)

z=0 : (A+2u)§f{

where a is the radius of the loaded area, and w is the circular frequency of
the periodic load.
The Laplace transform of the vertical displacement w is defined as

w = / w exp(—st) dt. (10.114)
0

Assuming that the initial values of the displacement and velocity are zero,

‘ the differential equation (10.112) now becomes

Figure 10.9: Circular load on half space.

w 10w o*w
——t+ ——— )+ (A +2u) = = ps’w 10.115
Gz +55,) + A+ 255 =ps’®, (10.115)
and the boundary condition (10.113) is transformed into
ow 0, if r > a,
The radial symmetry of the problem suggests the use of the Hankel transform
W:/ wrJo(re)dr. (10.117)
0
The differential equation (10.115) then is transformed into the ordinary differential equation
W —
(A +2p) = (ps”® + peHW, (10.118)

dz?
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or

d*w _

P (5% /el + EYW, (10.119)
where c; is the velocity of shear waves,

2=4 (10.120)
p
and n is an elastic coeflicient, defined by
1-2
=t = v (10.121)

T x+2n 20-v)

If a parameter ~ is introduced by the definition
V2 =352/ + €2, (10.122)

the solution of the differential equation (10.119) vanishing at infinity can be written as
W = A exp(—ynz). (10.123)

The integration constant A must be determined from the Hankel transform of the boundary condition (10.116). Using the well known integral
(Erdélyi et al., 1954, 8.3.18)

/ " Jo(r€) dr = g J1(af), (10.124)
0

this gives

e pwa

= a2 (s e 1) (10.125)

so that the solution of the transformed problem is

pwa

W= T 2w+ e

J1(ag) exp(—ynz). (10.126)

The inverse Hankel transformation of this result is

_ pwa > Ji(ag) Jo(r€) exp(—ynz)
W= 77()\+2u)(52+w2)/0 . de. (10.127)

It will not be attempted to evaluate this integral. Restriction will be made to two special results: the displacement of the center of the loaded
area, r = 0,z = 0, and the displacements for a vibrating point load.



Arnold Verruijt, Soil Dynamics : 10. CONFINED ELASTODYNAMICS 214
Displacement of the origin
The displacement of the point r» = 0,z = 0 is, with (10.127),
(oo}
J
—— pwa / 128 e (10.128)
n(A+2p)(s* + w?) g
or, in terms of the original parameters,
W = Lt la) (10.129)
nA+2u)(s2 +w?) Jo /€2 +s2/c2
This is a well known integral (Erdélyi et al., 1954, 8.4.3). The result is
_ pwe
Wy = 1 —exp(—as/cs)|. 10.130
This is the Laplace transform of the displacement of the center of the loaded area. Inverse Laplace transformation gives
pc
wyg = ———{H(t) — H(t — 2t.) — cos(wt) + cos|w(t — 2t.)|}, 10.131
0= ot g () — Hlt = 2t) - cos(at) + cosfu(t — 2t)]) (10.131)
where t. is a characteristic time,
t. = a/2cs, (10.132)
and H(t) is Heaviside’s unit step function,
0, ift<0,
H(t) = { 1 ift>0. (10.133)
For large values of time the two step functions cancel and the solution reduces to
PCs
wy = ——————— qcos(wt) — cos|w(t — 2t.)|¢. 10.134
After some elaboration this can also be written as
pa sin(wte) .
wy = ——————— sin[w(t — t.)]. (10.135)
n(A+2p) (wt.) | ]
The phase angle turns out to be wt.. As in the previous cases the simplicity of the final solution may be noted.
For very small frequencies, w — 0, the solution approaches the static result
w—0 : wy = ws pa (10.136)

bt
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1 This means that the dynamic amplification factor can be written as
3] t
[wol _ |sin(wto)] (10.137)
|ws] wt,
[wo/ws| - - . R
This is shown in Figure 10.10 as a function of a dimensionless frequency
w/we, where w, is defined by
0 ™ _l_2e_ JAn 10.138
0 5 10 YT R T a Ve (10.138)

w/We . .
/ The characteristic frequency w, has the character of the square root of the

Figure 10.10: Dynamic Amplification. ratio of a spring stiffness and a mass, as usual in dynamic problems. In

engineering practice the shear wave velocity cs usually is of the order of

magnitude of 100 m/s, and the physical dimension of the foundation size a is of the order of 1 m, or perhaps as big as 10 m. This means that

the characteristic frequency is of the order of magnitude of 20 s™* or 200 s~'. This is a rather large value, and it means that in many cases the

value of w/wy will be rather small. Only in case of very rapid fluctuations the dimensionless frequency may be larger than one. An example of
such a phenomenon is pile driving, by hammering or by high frequency vibrating.

Because it can be expected that in engineering practice the value of w/w. will usually be of the order of magnitude of 1, or smaller, the
most common values in Figure 10.10 will be located at the left part of the figure. It may be noted that for certain large values of w/w,. the
dynamic amplitude may be zero. This can also be seen from eq. (10.137), from which it follows that wy = 0 for all values of the frequency for
which w/w, = km, where k is any integer. For these frequencies the dynamic amplitude is zero, indicating extremely stiff behaviour. Such a very
stiff behaviour will not really be observed in practice, because the assumptions underlying the present theory are only weak reflections of the
complex behaviour of real soils. Also, the displacement at the center of the circle may be zero, but this does not mean that the displacements
are zero over the entire loaded area.

The phase angle ¥ has been found to be wt.. Thus there may be a considerable damping, except when the frequency w is extremely small.
This phenomenon is sometimes called radiation damping. It is produced by the spreading of the energy over an ever larger area.

Vibrating point load

If the radius of the loaded area a is very small the Bessel function Ji(a€) in the solution (10.127) can be approximated by the first term in its
series expansion, Ji(af) ~ fa&. This solution then reduces to

w =

pwa® /°° € Jo(r€) exp(—ynz) . (10.139)
0

20(A + 2p) (5% + w?) 0!
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or, writing F' = pma? for the total load,

w =

Fw * ED(re) expl_(n2)VE ¥ /] (10.140)
2O 20 1 o) NGETIr ' |

This is a well known inverse Hankel transform (Erdélyi et al., 1954, 8.2.24). The result is

Fw exp[—(s/cs)\/r? + n?2?]
27nm(A + 2u) (52 + w?) /r2 + 222 ’

Inverse Laplace transformation now is simple, using the standard formula for the Laplace transform of the function sin(wt) and the translation
theorem,

(10.141)

w =

F sinfw(t — tg)]

C 2N+ 20) (/12 4222
2 2,2
fo = YT (10.143)

c

H(t—ty), (10.142)

where, as before,

Again a simple result is obtained.
Problems
10.1 Derive expressions for the vertical normal stress o,. and for the velocity Ow/dt, for the case of a line pulse, see Figure 10.2.

10.2  Verify that the solution for a strip load, equation(10.91) reduces to the solution for a line load, equation (10.36) if the width of the strip
2a tends towards zero, with P = 2ga. Note that the variable x is also contained in ¢; and %s.

10.3 Derive expressions for the vertical normal stress o, and for the velocity dw/dt, for the case of the sudden application of a point load,
see Figure 10.8.



Chapter 11

LINE LOAD ON ELASTIC HALF SPACE

In this chapter some problems of an elastic half space are considered, in particular problems for a line pulse or a line load on the surface of the
half space. A problem of this type is often denoted as a Lamb problem, because the first solutions for such problems were obtained by Lamb
(1904). Lamb’s solution, which started from the solution of the problem for a periodic load, can be found, using more modern formulations and
techniques, in many textbooks, see e.g. Fung (1965), Achenbach (1973), Graff (1975) and Miklowitz (1978). In the present book the solutions
will be obtained by the De Hoop-Cagniard method, which uses a combination of Laplace and Fourier transform methods (De Hoop, 1960, 1970;
Cagniard et al., 1962), see also Appendix A. An alternative technique has been presented by Eringen & Suhubi (1975), using a self-similar
solution method, in which the number of independent variables is reduced by one, which is applicable in the case of a concentrated load.

The problems to be considered in this chapter are the displacements due to a line pulse on the surface, and the stresses due to a constant
line load on the surface. The solution of the first problem will be given in great detail. For the second problem the solutions are given with only
an outline of the derivation, as the solution methods are quite similar. It will be shown that, in the limit for large values of time, the solution of
the elastodynamic problem reduces to the known solution of the elastostatic solution. The solutions also appear to be in agreement with general
results of theoretical elastodynamics, such as the appearance and the behaviour of Rayleigh waves.

The solutions will be given in the form of analytic expressions, with elementary algorithms to calculate numerical data. A computer program
for a constant line load is available as the program LINELOAD.

11.1 Line pulse

11.1.1 Description of the problem

The first problem to be considered is the case of a line pulse on an elastic half plane, see Figure 11.1. This is an important problem in seismology,
where the load is caused by an explosion of very short duration, and the displacements of the surface are measured, at various distances from
the load, as a function of time.

The basic equations are the equations of motion in two dimensions,

00z 00,y 0%y

ox + oz o (1L.1)
2

0oy,  0o.. 0w (11.2)

or o0z o
217
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where u and w are the displacement components in z-direction and z-direction, respectively, and where p is the density of the material.

—O0zz

The material is supposed to be linear elastic, so that the stresses and the
strains are related by the generalized form of Hooke’s law,

z

Figure 11.1: Half plane with impulse load.

These equations can also be written as

ou Ow ou
. = (a + a> + 2 (11.3)
ou Ow ow
xr — - -
/\<8 + 5 >+2ua (11.4)
ou Ow
Oz =l <8z + 8x> ) (11.5)

where A and p are the Lamé constants of the material.
Substitution of the equations (11.3) — (11.5) into (11.1) and (11.2) leads
to the basic differential equations

The boundary conditions for a line pulse on the surface z = 0 are

v (e ) e ) o o

(A + 1) % <gu + a;;) +u (?912 222 ) p%if. (11.7)
(A+2W%+(A+u)§; +u?;;; p%, (11.8)
(>\+2u)(2271;)+()\+u)682; —i—ug; :pa;;u. (11.9)
2=0: 0., =0, (11.10)

2=0: 0., =—Qd(t)d(x), (11.11)

where @ is the strength of the line pulse, and §(z) and §(¢) are Dirac delta functions (Churchill, 1972), for instance

[0, if |¢] > e,
o0 = { 1/2¢, if [t] < e. (11.12)

with € — 0. The total area below the function is 1, [*_4(t)dt = 1.
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11.1.2 Solution by integral transform method

The solution of the problem is sought by using Laplace and Fourier transforms. The Laplace transforms of the displacements are defined as

U= / u exp(—st) dt, (11.13)
0
w = / w exp(—st) dt. (11.14)
0
If it is assumed that the displacements and the velocities are zero at the time of loading ¢t = 0, the transformed basic equations are
0*u 0*w 0*u
A+ 20) 5 + (A — = ps’u 11.15
A+ M)axQ + (A +p) 020x * Hoz =P5 ( )

—— = ps’w. (11.16)

Fourier transforms are defined as

U= /jo 7 exp(isaz) dz, (11.17)
/

w exp(isax) dx, (11.18)

with the inverse transforms

U= % N U exp(—isax) da. (11.19)
s [ —

w = —/ W exp(—isax) da. (11.20)
21 J_ o

It may be noted that the usual Fourier transform variable o has been replaced by sa, for future convenience.
If it is assumed that the displacements and their first derivative with respect to x vanish at infinity, it can be shown, using partial integration,
that

[m % exp(isar)dr = —iasU, (11.21)
> 0% : 2 277
— exp(isax)dr = —as°U. (11.22)

2
oo O
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Similar results apply to the Fourier transform of the vertical displacement.
The transformed form of the basic equations (11.15) and (11.16) is
32U dw —
cgd—g - isa(cﬁ - cg)ﬁ =s2(1+ ciaz)U, (11.23)
W dU —
2 . 2_ 2 _ 2 2 2
g T isa(c, — CS)E = s*(1+ ca®)W, (11.24)
where ¢, and ¢, are the velocities of compression waves and shear waves, respectively,
3 =(A+2p)/p, (11.25)
c=u/p. (11.26)
It is assumed that the solution of the two equations (11.23) and (11.24) can be expressed as
U = iAexp(—vsz2), (11.27)
W = Bexp(—vsz), (11.28)
where v is an unknown parameter at this stage, and A and B are unknown integration constants.
Substitution of (11.27) and (11.28) into equations (11.23) and (11.24) gives
(1+c2a® —2y*)A— (¢l — )ayB =0, (11.29)
(c;—c)ayA+ (1+ cZo® — cy*)B = 0. (11.30)

This homogeneous system of linear equations has solutions only for the two values of 72 for which the determinant of the system is zero. These

values can be written as v = 7, and v = £v,, where
’VP: \/a2+1/012;7
Vs = a2 +1/c2.

(11.31)
(11.32)

It is understood that in these equations the positive root is taken. The solutions with the negative sign should be omitted to ensure that the

solutions remain bounded for z — oo.
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The solution of the transformed problem now is found to be
U = iaCy exp(—psz) + i7sCs exp(—7ss2), (11.33)
W = 4,Cp exp(—7psz) + aCs exp(—vs52). (11.34)
Inverse Fourier transformation of these expressions gives
T = % / {aC) exp(—s7p2) + 7sCs exp(—s7s2) } exp(—isaz) da, (11.35)
s oo
w = o / {1 Cp exp(—s7p2) + aCs exp(—svs2)} exp(—isax) da. (11.36)

The notations C, and C; are used to indicate the strength of the compression wave and the shear wave, respectively, as suggested by the

parameters 7, and -, in the two parts of the solution.

In order to determine the coefficients C,, and C; the boundary conditions must be used. As these are expressed in terms of the stresses it
is convenient at this stage to obtain expressions for the Laplace transforms of the stresses, using the definitions (11.3), (11.4) and (11.5). This

gives

2 oo
Tow = 25— / {(2ua® — /\/ci)Cp exp(—psz) + 2uaysCs exp(—vss2)} exp(—isaz) da,
™ — 00

2 o]
oy = —82—” / {(20® 4+ 1/c2)C, exp(—y,52) + 2a7sC5 exp(—7s52)} exp(—isax) da,
T J_—c

1S

2 o0
Tow = ——— / {2a,C, exp(—7,52) + (202 + 1/¢2)Cy exp(—vs52)} exp(—isaz) da.
—o0

2T

For future reference the isotropic stress o is given as well. This quantity is defined as
0= %(O’mc + Uzz)-
It follows from equations (11.37) and (11.38) that its Laplace transform is

(A+p)s

2 o0
T=— C,exp(—v,82 — isax) do.
27rcg /_oo p exXp(=p )

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)
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The boundary conditions (11.10) and (11.11) can be expressed as Laplace transforms as

2=0: T,, =0, (11.42)
z2=0: 7, = —@/ exp(—isax)da. (11.43)
21 J_ o
Using these boundary conditions the coefficients C,, and C, can be determined. The result is
_Q 20% +1/c; (11.44)
P 2 2)2 2 ’ :
ps (202 +1/¢3)? — da?yyys
Q 200p
Csy=—— . 11.45
s (202 +1/¢2)? — 4a2v,7s ( )
11.1.3 The vertical displacement
The vertical displacement is of particular interest. It is found from equation (11.36) that its Laplace transform is
w = w1 + Wa, (11.46)
where 0 - (207 +1/e2)
_ Tpl20° 4+ 1/c .
= — — d 11.47
w 2mp J_ oo (202 4+1/¢2)2 — da?yyys exp[=s(yp2 Fiax)] do. ( )
o] 2 2
Wy = 9 @ exp[—s(vsz + iaz)] da. (11.48)

“2nu )y BaZ 1/ — daty,
The two integrals (11.47) and (11.48) will be evaluated separately, using De Hoop’s method (see Appendix A). The second integral will be
separated into two parts, wo and ws. For this first problem of the chapter, the analysis will be given in full detail.

The first integral

Using the substitution p = i« the first integral, equation (11.47), can be written as

_ Q o0 %(1/03 - 2p2)
w, = "
YT 2mip )i (1/€2 = 2p%)2 + 4p2yps

exp[—s(7p2 + px)] dp, (11.49)

where now
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Y= V1/E=p? s =/1/c:—p? (11.50)

The appearance of the factor , in the exponential function in equation (11.49) suggests that it represents the contribution of the compression
waves.
In the method of De Hoop (1960) the integration path in the complex p-plane is
S(p) transformed in such a way that the integral obtains the form of a Laplace transform
integral. For this purpose a parameter t is introduced (later to be identified with
the time), defined as
1
t =z + pz, (11.51)
with ¢ being real and positive, by assumption. The shape of the transformed inte-
gration path remains undetermined in this stage.
—1je—1 cs—1/cp 1/ep 1/cs 1/=Cr R(p) The integrand of the integral in equation (11.49) has singularities in the form of
branch points in the points p = +1/¢, and p = +1/¢, and simple poles in the points
p = £1/¢,, where ¢, is the Rayleigh wave velocity, which is slightly smaller than the
shear wave velocity. It may be noted that ¢, > ¢; > ¢,, so that 1/¢c, < 1/¢c, < 1/c,.
The integration path from p = —ico to p = oo is now modified to the two paths py
b2 and po shown in Figure 11.2, with the parameter ¢ varying along these two curves
from some initial value to infinity.

It may also be noted that the branch cut is necessary because the factors v,
and 75 are multiple valued. In the denominator of equation (11.49) the product
~p7Ys could be made single valued by a branch cut between p = 1/¢, and p = 1/c;
only, but the appearance of a factor v, in the numerator requires that the branch

Figure 11.2: Integration path for the first integral.

cut should extend towards infinity.
It follows from (11.50) and (11.51) that
r?p? — 2tpr +t* — zQ/Cf) =0, (11.52)

where 1% = 22 + 22.
Equation (11.52) is a quadratic expression in p, with the two solutions

tr iz
" .
po= 2 — = P22, (11.54)

r T
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where
tp, =71/cp. (11.55)

If it is assumed that the parameter ¢ varies in the interval ¢, < ¢ < oo, it follows that the two paths in the complex p-plane are continuous,
intersecting at the real axis in the point p = t,z/r* = (z/r)(1/c,) (which is to the left of the first branch point because x < r), and approaching
infinity at the positive and negative sides of the real axis, respectively. The precise shape of the curves p; and ps depends upon the values of x
and z, i.e. the location of the point considered in the physical plane.

Actually, the two branches, p; and ps, of the transformed integration path are hyperbolas, with the slope of the asymptote of p; at infinity
being z/x.

The upper part of the integration path

It follows from (11.53) that on the part p; of the integration path

dp x iz t

= : = =4 - —. 11.56
p=p =5t o (11.56)
Furthermore, it follows from (11.51) that
tz  ix T iz t
_ . e W e et b
P=PL =57 Vit 2= i/t tp{r2+7'2 t2—t12)}' (11.57)

It may be noted that on this part of the transformed integration path and for > 0 (which will later appear to be the main branch considered),
R(vp) > 0 and I(v,) < 0, so that arg(y,) < 0. This is in agreement with the definition in equation (11.50) and its analytic continuation into
the upper right quarter of the complex p-plane.

It follows from (11.56) and (11.57) that

dp B p

= D= = . 11.58
p=pLt oo = (11.58)
P
The upper part of the integral (11.49) can now be written as
oo 2(1/c2 — 2p? —st
I BU/E %Y eplost) 1159

w11 =
2mp Sy, (1/e3 = 2p°)2 +4p°0ys /12 — 12
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The lower part of the integration path

It follows from (11.54) that on the part ps of the integration path

dp x 1z t

. . 11.60
p=Dp2 di 22 e _t12> ( )
Furthermore, it follows from (11.51) that
tz iz A 71 t
—py =2 e s Sz
P=p2 i Hp= 5t g V12 =i/t tp{TQ - t2t§}. (11.61)
It follows from (11.60) and (11.61) that
d i
p=ps: T (11.62)

N

The lower part of the integral (11.49) can now be written as

_ Q [ Y (1/c2 = 2p?) exp(—st)

w1 = dt, P = P2, (1163)
2rp Jy, (1/c2 = 2p%)° +4p° s /12 — 12
where a minus sign has been omitted because the integration path has been reversed.
The total integration path
On the two parts p; and py of the integration path the values of p, v, and 7, are complex conjugates. This means that one may write
o Q /°° V2(1/c2 =2p%)  H(t—tp)
= = 2R P d —st)dt, p=pi, 11.64
1= mo Joo (/e =2p)% +4pP1pys /12 — 82 exp(=st) p=n ( )
where H(t —t,) is the Heaviside unit step function, defined as
0, ift <y,
H(t—t,) = { T (11.65)

The unit step function H (¢ — t,) has been introduced to ensure that the integration is actually from ¢ = ¢, to t = oco.
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The integral (11.64) happens to be in the form of a Laplace transform, which was precisely the aim of the transformation of the integration
path. It may be noted that the first term in the integral may be a (complex) function of the parameter ¢, but the Laplace transform parameter
s occurs only in the factor exp(—st). It can be concluded that the inverse Laplace transform is

201 /.2 2
Yp(1/cs = 2p7) H(t—t
wn =2 | i) R (11.66)
mp L(1/cZ = 2p?) +4pP s ) /12— 12
The second integral
Using the substitution p = i« the second integral, equation (11.48), can be written as
100 2 2

Wy = @ P Tp exp[—s(ysz + px)] dp, (11.67)

C2mip e (1/c2 —2p2)2 + dp2y,ys

where, as before,

S(p)
Y =V1/E—=p?,  ye=+/1/ct —p* (11.68)
The appearance of the factor =5 in the exponential function in equation
ps (11.67) indicates that this represents the contribution of the shear waves.
Again it will be attempted to transform the integration path in the com-
plex p-plane in such a way that the integral obtains the form of a Laplace
1 transform integral. In this case a parameter t is introduced (later to be
—1je—l ca—1/cp Col 1/cs 1/=C’“ R(p) identified with time), defined as
t = vz + px, (11.69)
with ¢ being real and positive, by assumption.
Pa It follows from (11.68) and (11.69) that
r?p? — 2tpx +t* — 2% /c? =0, (11.70)
where, as before,
Figure 11.3: Integration path for the second integral. 2

r? = 2% 4 22, (11.71)

Equation (11.70) is a quadratic expression in p, with the two solutions
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tr iz

tr iz
Pi=5- 12 — 12, (11.73)
where
ts=r/cs. (11.74)

If it is assumed that the parameter ¢ varies in the interval ¢ < t < oo, it follows that the two paths in the complex p-plane are continuous,
intersecting at the real axis in the point p = tsx/r? = (x/7)(1/cs) (which is to the left of the second branch point because 2 < r), and approaching
infinity at the positive and negative sides of the real axis, respectively. The precise shape of the curves ps and ps depends upon the values of
z and z, i.e. the location of the point considered in the physical plane. Because t; > t, the two integration paths may approach the real axis
at opposite points of the branch cut between 1/c, and 1/cs;. The integration path must then be extended with a loop around the first branch
point, see Figure 11.3.

The integral is separated into four parts : along the branches ps, p4, ps and pg, where the last two are the two possible branches of the loop
around the branch point 1/¢,. The contributions of ps and ps together form the part wy of the integral, and the contributions of ps and pg
together form the part ws.

The upper part of the integration path
It follows from (11.72) that on the part p3 of the integration path

_ . dp_x+iz t
p=Dps3 : dt 2 2 tz_tg'

(11.75)

Furthermore, it follows from (11.69) that

tz i z 1z t
_ . B e s 2t e
P=ps i %= 33 V2 — 12 = —i\ /12 — 2 {r2 +3 m} (11.76)
It may be noted that on this part of the transformed integration path and for x > 0 (which will later appear to be the main branch considered),
R(7vs) > 0 and I(7s) < 0, so that arg(ys) < 0. This is in agreement with the definition in equation (11.50) and its analytic continuation into
the upper right quarter of the complex p-plane.
It follows from (11.75) and (11.76) that

dp iYs
=py i o= 11.77
p=ps o o (11.77)
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The upper part of the integral (11.67) can now be written as

_ Q [* 209 exp(—st)
Wy = 2 dt, p=nps. 11.78
T omp )y, R 2P At E—2 0 PP (1L.78)
The lower part of the integration path
It follows from (11.73) that on the part ps of the integration path
dp r iz t
_,, W _z , 11.79
P=D4 di 22 mo 2 ( )
Furthermore, it follows from (11.69) that
tz  aix x 1z t
. _ AW e et
P=Dpg : 'ys—rz—i—TQ V2 — 12 =i/t tS{TQ 2 t2—t§}. (11.80)
It now follows from (11.79) and (11.80) that
dp s
= D= . 11.81
b=Da dt Foa— ( )

S

The lower part of the integral (11.67) can now be written as

T Q / = 2p°Yp7s exp(—st)
N dt, p= 11.82
Y2 T o )y, E 224 Aty R PP (11.82)

where a minus sign has been omitted because the integration path has been reversed.

The sum of the upper and lower paths

On the two parts ps and ps the values of p, v, and v, are complex conjugates. This means that one may write for the sum of the integrals along
these two parts of the integration path

— — Q > 2p27p'75 H(t — ts)
Wy =Wz + W2 =—N 5 IV 5
o Jo o (1/c3 = 2p%) +4pP s (/12— 12
Again, the integral happens to be in the form of a Laplace transform, and it can be concluded that the inverse Laplace transform is
Q { 20%7,Ys } H(t—ts) D= ps
T U(L/c2 = 2p?)2 + 4pPypys ) 12— 2

exp(—st)dt, p=ps. (11.83)

wy = (11.84)
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The contribution of the loop

The intersection of the branches ps3 and p4 with the real axis $(p) = 0 can be found by determining the value of p3 or py for t = t,. With (11.72)
or (11.73) this gives
tsxr oz 1

t=t, i p=ps= 5 =~ —.
T T Cs

(11.85)

This point is always located to the left of the branch point 1/c¢s, whatever the values of « and z are. The point p; may be located to the left or
right of the branch point 1/c,, however. It is located to the left of that branch point if

z 1 1
ro L (11.86)

Y
recs o Cp

or
T x

z_ <n, 11.87
N (1.87)

Cs [ R
=== ) 11.
K Cp A+2p (11.88)

If the depth z is sufficiently large for the condition (11.87) to be satisfied, the loop around the branch point 1/¢, is not needed, and there is no
further contribution to the integral ws.
On the other hand, if

where, as before,

N (11.89)

r v/ 2 + 22
the loop around the branch point 1/c, is necessary to ensure the applicability of the transformation of the integration path without passing any
singularities, and there are two more contributions to the integral wy. The additional contribution will be denoted by ws.
The upper part of the loop
Along the upper part of the loop ¢t < t; and p < 1/¢s. This means that +,, as defined by equation (11.50),

¥s = \/1/c2 — p?, (11.90)

now is real. Because t = px + 7,2, see equation (11.69), it now follows that v, can also be expressed as

t
L (11.91)
4 z
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It follows from (11.90) and (11.91) that the value of p can be determined from

r2p? — 2tpr + 2 — 22/? =0, (11.92)
which now gives
t
AN = (11.93)
r r

where the minus-sign has been taken to ensure that p < ps. Actually, it follows from (11.93) that

dp z t

pP=ps 1 =5+ 5 —,
b r r? 12— 12

(11.94)

which shows that dp/dt > 0if 0 < t < ts.
The smallest value of ¢ along the upper part of the loop occurs in the point p = 1/c,. If this value is denoted by t4, it follows from (11.93)

that
1 _ tgx z

— =5 Vi1 11.95
O ( )
or, with t, =r/c,,
tp = (w/r)tq — (2/r) VI3 — 13 (11.96)
It follows from this equation that
tg=(x/r)tp + (2/r) VI - 1, (11.97)

where the plus-sign has been chosen to ensure that t, > ¢,. Equation (11.97) can also be written as

te/ts = (xn+2v/1—n2)/r, tq/ts <1. (11.98)

It can be shown that this is always smaller than 1, in the region where the condition (11.89) is satisfied.
It follows from (11.90) and (11.93) that on the upper part of the loop

T z t
. = /t2_t2{7 — } 11.

Comparison with (11.94) shows that
dp s

S

p=Dps :
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which enables to write the integral along this part of the loop as an integral over the variable ¢t. Actually, with (11.67) one obtains

T Q / . 2p% s exp(—st)
Y3 omi dt, p=ps. 11.101
U7 mip )y, @ —wapry, E—e 0 TP (11.101)

In this case all the parameters in the integrand are real, except for v,. Because on this part of the integration path 1/c, < p < 1/¢, it follows
that arg(l/cf, — p?) = —, so that v, is purely imaginary, and its argument is —/2.

The lower part of the loop

Along the lower part of the loop all quantities are the same as on the upper part of the loop, except for 7,, which now is the complex conjugate
of the previous value. Furthermore the integration path is from p = 1/¢s to p = 1/¢p, i.e. from the right to the left. By reversing the integration
path the result will be

Q [* 202 7p7s exp(—st)
2mip Jo, (1/c3 —2p2)? +4pPvpys /12 — ¢2

where it should be noted that the value of v, is the complex conjugate of the value in the integral (11.101).

W3z = — dt, p=ps, (11.102)

The sum of the upper and lower loops

If the integral (11.101) is written as ws; = (a+4b)/i, the integral (11.102) will be of the form W3, = —(a — ib)/i. The sum of these two integrals
then is w31 + w32 = 2b. This means that

20> YpYs exp(—st)
5 5 5 dt, p=ps.
1/e2 —2p?)2 + 4p>yvs /12 — 12

ts
W3 = W31 + W32 = @ 3/ (11.103)
T tq (

The integral is again in the form of a Laplace transform. The Laplace transform parameter s appears only in the factor exp(—st), but the time
t may appear in various forms in the integrand. It can be concluded that the original function is

Q { 207 } H(t —ty)H(ts — 1)
ws = 2 g . p=ps. 11.104
37 7n {2 — 209)2 + dpPy,s NG p=ps ( )

It may be noted that the function H (¢t —t,)H (ts —t) is equal to 1 only in the interval ¢, < t < t;, elsewhere it is zero.
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Calculation of numerical data

The three components of the vertical displacement are defined by equations (11.66), (11.84) and (11.104). In order to calculate numerical data
it is most convenient to express these equations in dimensionless form.

The first component of the vertical displacement is, from (11.66),

2 2 2
7, (1/cs —2p7) H(t—t
w1 = Q gR{ ) P B B) } ( p)v P =D, (11105)
mo L(1/c2 = 2p%)? +4p° s ) /12— 12
where t, = r/cp, 7 = V&2 + 22, and p; is defined by equation (11.53),
tr iz

The quantities v, and +, are related to the variable p and the velocities of compression waves and shear waves by the equations (11.50),

W= VIZ =1 % =IJE P (11.107)

In general the quantities p, v, and 7, are complex.
A suitable choice of basic dimensionless parameters seems to be

E=a/z, T=cst/z, Ty = Cstp/2, Ts = Csts /2, Tqg = Cstq/z, a = pics. (11.108)

Some derived parameters are
r=2z\14+8&, gs=csvs=V1—a? g, =csyp =Vn?—a’ (11.109)

It now follows from equation (11.105) that

wiTpz _ {( (1-2d°)g; } H(r — 1) (11.110)

Qcs 1 —2a2)% 4 4a2g,9s M’
a=(¢r+iy/m2—72)/(1+8). (11.111)

where the parameter a is defined by

The second component of the vertical displacement is, from (11.84),

Wy =

2027, Vs H(t —tg
Q { P> ! E—to) (11.112)
wu o U(1/e2 —2p2)2 + 4p2y,7s 12 —t2

S
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where t; = r/cs, and p3 is defined by equation (11.72),
tr iz

If the dimensionless form of p3 is defined as b = pscs, the dimensionless form of equation (11.112) is

WoT Uz 2b2,gpgs H(T _ TS)
= 11.114
Qcs %{ (1 —2b%)% + 4b%gpgs } T2 =712’ ( )

where the parameter b is defined by
b= (¢r+iV/T2—12)/(1+62). (11.115)

The third component of the displacement is, from (11.104),

2% s H(t—ty)H(ts—t
e Qof W ety v
mu L(1/c = 2p%)% + 4p*yp7s 2 — 12
where t,/ts = (zn+ 2+y/1 —n?)/r and p;s is defined by equation (11.93),
xt z
=5 5 VE- (11.117)

If the dimensionless form of ps is defined as ¢ = pscs, the dimensionless form of equation (11.116) is

- 2 — —
wsTpz %{ 2¢%gp9s } H(r —714)H(7s ’7')’ (11.118)
Qcs (1 —2¢?)? + 4c?g,9s N
where the parameter c is defined by
c= (61— /T2 —72)/(1 4 &%). (11.119)

Computer program

A function (in C, using complex calculus) to calculate the value of the dimensionless parameter wrpuz/Qcs as a function of the parameters
& = x/z (with £ > 0), 7 = ¢,t/z and Poisson’s ratio v, is shown below. The function consists of three parts, as given by equations (11.110),
(11.114) and (11.118). Great care must be taken to verify that the arguments of the square roots are calculated correctly, in agreement with
the range determined by the analytic continuation of the original definitions of -, and vs. This may require some preliminary verification of
intermediate computations.
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double LinePulseW(double xi,double tau,double nu)
{
double w,wl,w2,w3,n,nn,xil,taup2,taus2,taus,tauq,tau2;
complex b,bb,bl,gp,gs,d,e,c,cc,cl;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt(nn) ;xil=1+xi*xi;
taus2=xil;taup2=nn*taus2;taus=sqrt(taus2) ;taug=n*xi+sqrt(1-nn) ;tau2=tau*tau;
if (tau2<=taup2) wi=0;else
{
b=complex(xi*tau/xil, (sqrt(tau2-taup2))/xil) ;bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=bl*gp*gp;e=bl*bl+4*bb*gp*gs;
wl=real(d/e)/sqrt (tau2-taup2);
}
if (tau2<=taus2) w2=0;else
{
b=complex(xi*tau/xil, (sqrt(tau2-taus2))/xil) ;bb=b*b;b1=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=2*bb*gp*gs; e=b1*bl+4*bb*gp*gs;
w2=real(d/e)/sqrt(tau2-taus2);
}
if ((tau<=tauq) | | (tau>=taus) | | (xi*sqrt(1-nn)<nn)) w3=0;else
{
c=complex ((xi*tau-sqrt (taus2-tau2))/taus2,0) ;cc=c*c;cl=1-2xcc;
gp=sqrt(nn-cc) ;gs=sqrt (1-cc) ;d=2*cc*gp*gs;e=cl*cl+d*cc*gp*gs;
w3=imag(d/e) /sqrt (taus2-tau2);
}
w=wl+w2+w3;
return(w) ;

}

Some examples are shown in Figures 11.4 and 11.5, for v = 0, and ¢st/z = 5 and cst/z = 40, respectively. In Figure 11.4 the first wave, the
compression wave, has reached the distance 2/z = 7.01, and the second wave, the shear wave, has reached a distance z/z = 4.91. It can easily be
verified that these values agree well with the theoretical values c,t/r = 1 and ¢st/r = 1, respectively. The Rayleigh wave can be seen to follow
some time after the shear wave in Figure 11.5. By considering other values of time it can be seen that the shape and amplitude of the Rayleigh
wave disturbance are practically independent of the horizontal distance. This is in agreement with theoretical analysis of Rayleigh waves in the
two-dimensional case, see for instance Achenbach (1973), or the analysis of Rayleigh waves in Chapter 9 of this book.
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Figure 11.4: Line Pulse - Vertical Displacement, v = 0, c¢st/z = 5.
wrpz/Qcs
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Figure 11.5: Line Pulse - Vertical Displacement, v = 0, ¢st/z = 40.
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11.1.4 The vertical displacement of the surface

The expressions for the vertical displacement derived in the previous section are not suitable at the surface z = 0, because z has been used as a
factor in the dimensionless parameters. Therefore another set of parameters must be introduced for the displacements of the surface.

The first component

The first component of the vertical displacement is, from (11.66),

wy = , p=0p1, (11.120)

Q%{( Ta(L/cd —2p%) }H(t—tp)

mo L1/ = 2p2)2 +4pPyys ) /17— 12

where t, = r/c,, r = V&2 + 22, and p; is defined by equation (11.53),

o
pL= bR (11.121)

r r

For z = 0 the radial coordinate is simply r = x, and the expression (11.121) reduces to
z=0: p=t/ex=1/cs, (11.122)

where now

= et/ (11.123)

which will be considered as the basic variable.
From (11.57) it now follows that

2=0: ’7p=—g\/tQ—t%Z—i\/TQ—n2/CS7 (11.124)

where, as before,

2
5  Ci I 1-2v
=G _ _ (11.125)
2 A+2u 2(1-v)
Using the parameter 7 the value of ¢,, as defined by (11.55), can be written as
z2=0 : t,=r/c, =nz/cs, (11.126)

so that

z=0: V12 =12 = (v/cs)\/T? — > (11.127)
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Also, it follows from (11.124) that
2=0: v =—(r"—n’)/c. (11.128)
Furthermore, it follows from (11.50) that
z2=0: =1/ -p*=(1-71%)/c (11.129)

s*

It has been seen before that the first integral is unequal to zero only if ¢ > ¢, or 7 > 7, where 7 is a constant smaller than 1. The value of v,
now appears to depend upon the value of 7 with respect to 1,

z2=0,7<1 : v5=vV1-72/c, (11.130)

2=0,7>1: v5=—ivV/12—1/cs. (11.131)
The minus sign in the last expression has been taken because arg(1/c? — p?) = —n if p > 1/c2 along the path p; just above the real axis.

Finally, it follows that the expression (11.120) can be calculated as

z2=0, 7<n : w =0, (11.132)

_ 2 2 _ 2
Qe §R{ L =2r)yr 0 } (11.133)
mpx U1 —272)2 — 472, /72 — 21— 72

Qcs (1—272)\/72 —n?
207> 1w == 3 11.134
! mur (1 — 272)2 — 472, /72 — 1272 — 1 ( )

This defines the value of the first contribution to the surface displacements, as a function of the dimensionless variable 7 = ¢4t/x.

z=0,n<17<1 : wy =—

The second component

The second component of the vertical displacement is, from (11.84),

Q 20%VpYs H(t—t,)

_ Y . p=ps, 11.135
w2 T {(1/c§ —2p?)% + 4p2’yp%} 712 b=Dps ( )
where t; = r/cs, and ps is defined by equation (11.72),
tr iz
Py =5+ 5 P E. (11.136)
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At the surface z = 0 the radial coordinate is r = x, and the expression (11.136) reduces to
z2=0: p=t/z=1/cs, (11.137)

where, as before, see equation (11.123), 7 = ¢4t/x, which is the basic variable.

It may be noted that in the part of the solution considered here, see equation (11.135), the variable ¢ > t,, where now t5 = x/c,, see (11.74).
This means that 7 > 1.

The values of 7, and s, as defined in general by equations (11.68), now are, because the argument of the expressions 1/ ci —p?and 1/c2 —p?
is —7 for points p following a path just above the real axis,

Tp = —i/T2 = n?/cs, vs = =iV 12— 1/cs. (11.138)
Furthermore,
V2 =12 = (z/cs)V T2 — 1. (11.139)

Using these results it follows that the expression (11.135) can be calculated as
z=0,7<1 : wy=0, (11.140)
{ 2y P } (11.141)
T (1 —272)2 — 472 /72 —n2/72 -1 ' ’

This defines the value of the second contribution to the surface displacements, as a function of the dimensionless variable 7 = c4t/x.

z2=0,7>1: we =—

The third component
The third component of the displacement is, from (11.104),

Q (\{ 2p*9ps } H(t —tg)H(ts — 1)
wy = g . p=ps, 11.142
3 T (1/c2 — 2p?) + 4p7,7, \/W pP=Dps ( )
where t,/ts = (xn + z+/1 —n?)/r and ps is defined by equation (11.93),
rt oz
b= yEE (11.143)

At the surface z = 0 the radial coordinate is r = z, and the expression (11.143) reduces to

z2=0: p=t/x=1/cs, (11.144)
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where, as before, see equation (11.123) 7 = ¢,t/x, the basic variable.

It may be noted that in the part of the solution considered here, see equation (11.142), the variable ¢ varies in the range t; <t < t;. Because
for z = 0 it follows from (11.97) that t; = ¢, the range of ¢ is t, < t < t,. This means that n < 7 < 1. It may also be noted that for z = 0 the
condition (11.89), which is necessary for this contribution to be applicable, is always satisfied.

In this case
Yp = —i/T2 —n?/cs, vs =V 1—12/cs, (11.145)
VE — 12 = (z)es)V/1 - 72, (11.146)

Using these results it follows that the expression (11.142) can be calculated as

z2=0,7<n : w3 =0, (11.147)
Qcs 2it2\/72 — 2
2=0, np<T<1 : wy=— s{ } 11.148
! ’ T (1 —-272)2 —4ir2\/72 — 21— 72 ( )
=0, 7>1: wy=0. (11.149)

This defines the value of the third contribution to the surface displacements, as a function of the dimensionless variable 7 = ¢4t/x. This part of
the solution is often denoted as the head wave.

Total surface displacements
Adding the three contributions to the surface displacements, the final expressions for the displacements of the surface z = 0 are, with 7 = ¢4t /x,
z=0,7<n : w=0, (11.150)

ch (1 — 27‘2)2 7-2 _ n2
UL { (1 —272)4 +1674(72 — n2)(1 — 72) }»

Qe { Vil } (11.152)
T (1 —272)2 —472/72 —n2V/72 — 1 . '
This completely defines the surface displacements, as a function of the dimensionless variable 7 = ¢st/x. The displacement is a continuous
function of this variable, but there is a singularity for the value 7 = (3, where 8 denotes the arrival time of the Rayleigh wave. Mathematically,
this singularity is caused by a zero of the denominator of the functions (11.151) and (11.152). This zero occurs in the range 7 > 1, indicating
that the Rayleigh wave arrives (shortly) after the shear wave.

The solution derived here, as given in equations (11.150) — (11.152), is in agreement with the solution given by Eringen & Suhubi (1975), and
with Lamb’s original solution (Lamb, 1904). The present solution method has the advantage that it gives the solution for every point z, z in the

z=0,n<7<] : w=—

(11.151)

z=0,7>1: w=
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half-plane, see the previous section.

It may also be interesting to note that the first two parts of the
solution represent a compression wave (or P-wave), propagating at ve-
locity ¢, and a shear wave (or S-wave), propagating at velocity c,.
The P-wave part of the solution is defined by equation (11.66), and
the S-wave part of the solution is defined by equation (11.84). It has
appeared, however, that between the arrival of the compression wave
and the shear wave an additional solution is needed, near the surface
(sometimes denoted as the head wave), in order to satisfy the zero stress
boundary condition at the surface. This part of the solution is defined
by equation (11.104).

The three wave fronts are indicated in Figure 11.6, see also Achen-
z bach (1973). The area affected by the head wave is indicated in the
figure by shading. This area is defined by the condition (11.89), or

Figure 11.6: The three wave fronts.

22 C;,Q, 1
— < =—-1= 11.153
2 < c? 1—-2v ( )

The figure has been drawn for v = 0.25. The distances ¢t and c,t in the figure indicate that the figure expands into space.

Computer program

A function (in C) that calculates the vertical displacement of the surface for given values of v and ¢ t/x is reproduced below. It is assumed that
x > 0. For values of x < 0 the displacements can be obtained using the symmetry of the solution.

The parameters v and cgt/z are denoted by nu and tau in the program. The quantity tr denotes the parameter cgt,/x, where ¢, is the
Rayleigh wave velocity.

double LinePulseWS(double nu, double tau)
{
double pi,fac,n,nn,e,f,a,b,bl,b2,w,t,tt,tr,eps;
pi=4*atan(1.0);fac=1/pi;eps=0.0001;t=tau;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ; e=0.000001; e*=e;f=1;b=(1-nu)/8;
if (nu>0.1) {while(f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a));f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8*(1+a)*(1+nu/a)));f=fabs(b-a);}}
tr=sqrt(1+b);if (t<=n) w=0;else if (t<=1)
{
tt=t*t;a=sqrt(tt-nn);
bi=(1-2%tt)*(1-2%tt) ;b2=4*tt*sqrt ((tt-nn)*(1-tt)) ;b=blxb1l+b2*b2;
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w=-fac*a*bl/b;

}

else

{
if (fabs(t-tr)<eps) {if (t<tr) t=tr-eps;else t=tr+eps;}
tt=t*t;a=sqrt(tt-nn) ;b=(1-2%tt)* (1-2%tt) -4*tt*sqrt ((tt-nn)*(tt-1));
w=-fac*a/b;

}

return(w) ;

}

The surface displacements are shown in graphical form in the Figures 11.7, 11.8 and 11.9, for three values of v. In each case the displacements
remain zero until the arrival of the compression wave, and there is a singularity at the passage of the Rayleigh wave. At the time of arrival of
the shear wave, cst/x = 1, there is a discontinuity in the slope of the curves.

—9J

wpz/Qes 0

Figure 11.7: Vertical displacement, v = 0.00.
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wpr/Qcs 0

Figure 11.8: Vertical displacement, v = 0.25.

wpr/Qcs 0

0 1 2
cst/x

Figure 11.9: Vertical displacement, v = 0.50.
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11.1.5 The horizontal displacement

The general solution for the horizontal displacement u has been given in equation (11.35), in the form of the Laplace transform of a Fourier
integral,

T = ;—S/ {aCp exp(—s7p2z) + 7sCs exp(—s7,2) } exp(—isax) do, (11.154)
s —0o0

where the constants C), and C, have been given in equations (11.44) and (11.45),

20% +1/c2
o -9 o+ 1/c 7 (11.155)
ps (202 +1/c2)? — 4o,
Q 2007p
C,=——=< . 11.156
us (207 + 1/ — 4oy, (11.156)
Substitution of these results in equation (11.154) gives
U =1uy +ug + us, (11.157)
where - (202 1 1/e2
1Q a2a +1/c2) .
= — 2 — d 11.158
ol BN C TRy e exp[—s(Yp2 + iow)] do, ( )
) oo 9 .
U + U3 = Q. Y1 exp[—s(vsz + iax)] da. (11.159)

a 277:“/ —00 (2042 + 1/02)2 - 4a2’7p’78
As in the analysis of the vertical displacement, the variable « is replaced by p = ia, so that

Q[ p(1/c2 —2p?)
C2mp [ (1/€2 = 2p%)% + ApPyys

uy exp[—s(vpz + px)] dp, (11.160)

iQ [ 207V
271 J —joo (1/€2 = 2p2)% + 4pPypys

w=VITE"F,  w=VIE-F (11.162

These integrals can be evaluated in the same way as the integrals for the vertical displacement, using a transformation of the integration path
so that the Fourier integral is modified into a Laplace transform integral, and the inverse transform can immediately be found.

U + U3 = — exp[—s(vsz + px)] dp, (11.161)

where, as before,
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In this case it would be sufficient to introduce branch cuts in the p-plane be-
—1/er —1/ca—1/c, + /e, 1/ce 1/c, tween the points p = 1/¢, and p = 1/¢,, and between the points p = —1/c;
R(p) and p = —1/c¢p, see Figure 11.10, because this would make the integrands of
equations (11.160) and (11.161) single valued. Care should be taken to avoid
passing the poles at 1/¢, or —1/c,, as was already pointed out by Lamb

Figure 11.10: Branch cuts in the p-plane. (1905).

The first component of the solution is found to be

Uy =

Qm{( Prp(1/c; - 2p%) }H(t*fp)’ R (11.163)

o \(1/c2 = 2p?)2 +dp?y ) 2 =2

where p; is defined by equation (11.106).
The dimensionless form of this equation is

ULTT L2 :%{ agy(1 — 2a?) } H(t—1p) (11.164)
ch (1 - 2&2)2 + 4a2.gpgs 7'2 — 7'3 ’ '
where the parameter a is defined by (11.111), i.e.
a=(Er+iyT2—72)/(1+&). (11.165)
The second component of the solution is found to be
Q 2p7p73 H(t—ts)
I %{ s } . p=ps, 11.166
" o (1) —2p2)? 4 4pPypys 12— 2 b=ps ( )
where p3 is defined by equation (11.113).
The dimensionless form of this equation is
ugTpz —§R{ bgpg? } H(t —7y) (11.167)
Qcs (1 - 2b2)2 + 4b2gpgs T2 — 7'52 ’ .

where the parameter b is defined by (11.115), i.e.

b= (&7 4+i\/T2 —72) /(1 4 £2). (11.168)
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The third component of the solution is found to be

2 2 H(t—t,)H(ts —t
uz = —Q\‘\S{ 5 pQ’yZ;’y( 5 } ( o H )7 D = ps, (11.169)
T U(1/c2 = 2p?)2 + dp?yp7s 22— t2
where ps is defined by equation (11.117).
The dimensionless form of this equation is
2 _ _
usTpZ _%{ 2¢gp9; } H(r—1y)H(1s — 7) 7 (11.170)
Qcs (1 —2¢2)2 +4c%g,9s T2 72
where the parameter c¢ is defined by (11.119), i.e.
c= (61— /T2 —72) /(1 + &€2). (11.171)

Calculation of numerical values

A function (in C, using complex calculus) to calculate the value of the dimensionless parameter umpz/Qcs as a function of the parameters
¢ = x/z (with £ > 0), 7 = ¢,t/z and Poisson’s ratio v, is shown below. The function consists of three parts, as given by equations (11.164),
(11.167) and (11.170).

double LinePulseU(double xi,double tau,double nu)
{
double u,ul,u2,u3,n,nn,tau2,taup2,taus2,taus,tauq;
complex a,aa,al,b,bb,bl,gp,gs,d,e,c,cc,cl;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ; tau2=tau*tau;
taus2=1+xi*xi;taup2=nn*taus2;taus=sqrt(taus2) ;taug=n*xi+sqrt(1-nn);
if (tau2<=taup2) ul=0;else
{
a=complex(xi*tau/taus2,sqrt(tau2-taup2)/taus2) ;aa=a*a;al=1-2%aa;
gp=sqrt(nn-aa) ;gs=sqrt(1-aa) ;d=a*gp*al;
e=al*al+4*aa*gp*gs;ul=real(d/e)/(sqrt(tau2-taup2)) ;
}
if (tau2<=taus2) u2=0;else
{
b=complex(xi*tau/taus2,sqrt(tau2-taus2)/taus2) ;bb=b*b;b1=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=2*b*gp*gs*gs;
e=b1xbl+4xbb*gp*gs;u2=-real(d/e)/(sqrt(tau2-taus2));
}
if ((tau<=tauq) || (tau>=taus) || (xi*sqrt(1-nn)<nn)) u3=0;else
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{
c=complex ((xi*tau-sqrt (taus2-tau2))/taus2,0) ;cc=c*c;cl=1-2xcc;
gp=sqrt(nn-cc) ;gs=sqrt(1-cc) ;d=2*cxgp*gs*gs;e=clxcl+dxcc*gp*gs;
u3=-imag(d/e)/sqrt(taus2-tau2) ;
}
u=ul+u2+u3;
return(u) ;

}

Some examples are shown in Figures 11.11 and 11.12, for v = 0, and ¢st/z = 5 and cst/z = 40, respectively. In Figure 11.11 the first wave, the
—1

wrpz/Qcs

T Y
Figure 11.11: Line Pulse - Horizontal Displacement, v = 0, ¢st/z = 5.

compression wave, has reached the distance x/z = 7.01, and the second wave, the shear wave, has reached a distance x/z = 4.91. It can easily
be verified that these values agree well with the theoretical values ¢,t/r = 1 and ¢st/r = 1, respectively. For large values of time, practically the
only effect remaining is the Rayleigh wave, see Figure 11.12, arriving shortly after the passage of the shear wave.

11.1.6 The horizontal displacement of the surface

The expressions for the horizontal displacement derived in the previous section can not be used at the surface z = 0, because z has been used as
the scaling factor in the dimensionless parameters. Therefore another set of dimensionless parameters must be introduced for the displacements
of the surface.
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wrpz/Qcs

_150050
x/z

Figure 11.12: Line Pulse - Horizontal Displacement, v = 0, c¢st/z = 40.

The first component

The first component of the horizontal displacement is, from (11.163),

o Qg S g Hew)
o U(1/e2 —2p2)? + ApPyyvs 22’ ’
where ]
_ tx 1z 5 5
pP1 = 7“72 + ﬁ te — tp.

(11.172)

(11.173)

At the surface z = 0 the radial coordinate r coincides with z, r = x, so that p; = ¢/z. Introducing a dimensionless time variable 7, defined as

T = cst/x,

the parameter p; can be written as p; = 7/c¢s.

(11.174)

Because the integral (11.172) contains a factor H(t — t,), and t, = x/c, = an/cs = nt/7, non-zero results will be obtained only for 7 > 7.

The parameters 7, and v, now are

2=0,T>n : v =—ivV12—1n%/cs,

(11.175)
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z2=0,7<1 : v%5=VvV1=-72/cs, T>1: v=—i/72—1/cs. (11.176)

And the factor /% —t2 is
z2=0, 7>n : Jt2 =12 = (x/cs)\/T? =12, (11.177)

which shows that for all values 7 > 7 the factor v, //t? — 12 = —i/x.
As stated above, the result will be zero if 7 < 7. If n < 7 < 1 the factor 7,7, will be imaginary, so that the denominator in the expression
between brackets in equation (11.172) will be complex. This leads to the result

s 1—272
cmO et =g r(1=2r) } (11.178)

THT { (1—=272)2 — 4ir2\/72 — >V/1 — 72

If 7 > 1 the factor ~,7v, will be real, and the factor between brackets in equation (11.172) will be imaginary, so that the real part is zero. This
suggests that the expression u; = 0 for 7 > 1, but this may not be correct, because the denominator of equation (11.172) passes through zero, at
the value of p corresponding to the Rayleigh wave singularity. The simplest way to investigate this is to return to the original integral (11.160),
with z =0, _
_ Q[ p(1/cs - 2p?)
Uy =

2 ) oo (1/€3 = 2p°) + 4%
and to analyze the behaviour of the integral along the modified integration path when it passes the singularity at p = 1/¢,, for z = 0, see
Figure 11.13. The integrand of equation (11.160) is real along the real axis for p > 1/c¢s (this corresponds to 7 > 1), and therefore the

S(p)

exp(—spx) dp, (11.179)

1/cp

1/cr

Figure 11.13: Modified integration path for z = 0.
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contributions of the path just below the real axis (from right ot left) and the path just above the real axis (from left to right) cancel, as was
also obtained above. This requires, however, that the integral be considered as a Cauchy principal value, because the integrand of equation
(11.160) has a singularity on the positive part of the real axis at p = 1/¢,. The possible contribution of integrating around this singularity can
be determined by calculating the contribution to the integral of a small circle surrounding the pole at p = 1/¢;..

Therefore, let the denominator of the integral, the Rayleigh function, be denoted by R(p?),

R(p*) = (2p° = 1/2)* — 4p*\/p> — 1/c2\/p> — 1/¢2, (11.180)

where 7, and ~, have been given their appropriate values for = = 0 and large real values of p. Introducing a dimensionless parameter ¢ = pc,

one may write, with n = ¢5/cp,
R(¢%) = ¢iR(P*) = (2¢° = 1) — 44>V — 1>V ¢® — (11.181)

For real values of ¢, such that ¢ > 1, the function R(q?) is real, and it has a zero for ¢ = 3 = ¢, / ¢, where ¢, is the Rayleigh wave velocity. It

follows that
\/m\/ﬁ?j — (252 _ 1)2/452, (11.182)

In the vicinity of this zero, the function R(q?) can be written as

R(¢*) = (¢* = )R (¢*)| =2, (11.183)

where R'(¢?) = dR(q?)/dq?, or

R(¢?) =4(2¢> — 1) — 4/ — 2/ 20°(2¢* —1 1) 11.184
(%) = 4(2¢” 9= +m\/71 ( )

Using equation (11.182) it follows, after some simple algebraic operations, that in the vicinity of 3

1-45% 4+ 8(1 - n*)B°

2
=—2(q — 11.1
R(q%) (a—8) 3O 1) (11.185)
It now follows that integration along a small circle surrounding the pole p = 1/¢,., in clockwise direction, gives a contribution
__Q B*(28% —1)°
= — — ). 11.186
Ui 2/.14 1—4/62+8(1_772)ﬂ6 exp( S.’L’/C ) ( )
Inverse Laplace transformation gives
Q B*(28% — 1)
z=0,7>1: uy =— —x/c), 11.187
T YT o 1437 + 8(1— n2) 5 ot —z/er) ( )

where §(t — z/c,) is Dirac’s delta function. It appears that there is indeed a non-zero contribution due to the pole at p = 1/c,..
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The second component

The second component of the horizontal displacement is, from (11.166),

Q 2pY,72 H(t —ts)
- ,73%{ s } . p=ps, 11.188
2 o L(1/c2 —2p2)2 + 4pPypys 12 — {2 p=ps ( )
where ; )
X 1z
ps= 5+ V- (11.189)

Again using the dimensionless time parameter 7 = c¢4t/x for points on the surface z = 0, where p3 = t/z, and noting that contributions can
only be expected for ¢ > ts, or 7 > 1, it can be seen that the denominator of the term between brackets is real, and that the denominator
is imaginary, so that the result would be zero, if it were not for a possible contribution from the pole at p = 1/¢,.. This contribution can be
determined in the same way as in the case of the first component. The expression for uy + us in the integral (11.161) is

iQ [ 2p7pYs
21 J oo (1/€2 — 2p%)2 + 4p2 75

W= VITE=F,  w=VIE-F (11191

The parts of the integral along the real axis z = 0 are, if p > 1/¢s,
_ 1Q 2p\/p2 — 1/cpr/p? — 1/cs

Uo =
YT (297 — 122 — 4pP /0P — Lo /PP — 1jcs

Along the real axis, for p > 1/cq, the integrand appears to be real, so that the two parts of the integral just above and just below the real axis
cancel, provided that the two parts of the integral are considered as Cauchy principal values, because of the singularity at p = 1/c,. Again, the
possible contribution of integrating around this singularity can be determined by calculating the contribution to the integral of a small circle
surrounding the pole at p = 1/c,. In this case this gives, using the same type of analysis as previously,

Q  er-1

B = LT ap v a(1 g P/ )

exp[—s(vsz + px)] dp. (11.190)

U + Uz = —

with

exp(—spz) dp. (11.192)

Inverse Laplace transformation gives
Q (e
dp1— 462+ 8(1 - 72)58

Again there appears to be a non-zero contribution due to the pole at p = 1/¢;..

z2=0,7>1: up = 0t —x/cr). (11.194)
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The third component
The third component of the horizontal displacement is, from (11.169),

Q (\{ 2p772 } H(t —t)H(ts — 1)
Uy = ——= G . p=ps, 11.195
P U1/ = 2p7)7 + dpPy s N b=ps ( )

where

¢
ps=— — = 2P (11.196)

r r

Using the dimensionless time parameter 7 = ¢4t/ for points on the surface z = 0, this reduces to

- QCS%{ 2Ty =PVl T } (11.197)
mur - U(1 = 272)2 — 4i72,/72 — n2\/1 — 72

For other values of 7, notably 7 < n or 7 > 1, there is no contribution of this component, ug = 0.

z=0, <7<l : ug

Total surface displacements

Adding the contributions to the surface displacements, the final expressions for the displacements of the surface z = 0 are, with 7 = ¢ t/z,

z=0,7<n : u=0, (11.198)
s 2r(1— 22 /PRy =
s per<l s T =2r) V7 — 1 Z__ (11.199)
mux (1 —272)4 +1674(72 — n2)(1 — 72)
Qe (273 —1)3

(r = B). (11.200)

z=0,7>1: u

 dpr 1 — 482 +8(1 —n?)B° 0

In the last equation it has been used that §(t — 8) = (x/cs)d(t — x/¢,), which can be derived from the definition of Dirac’s delta function,
equation (11.12).
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-1

upz/Qcs 0

Figure 11.14: Horizontal displacement, v = 0.00.

upz/Qcs 0

Figure 11.15: Horizontal displacement, v = 0.25.
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-1

Uﬂx/ch 0]

cst/x

Figure 11.16: Horizontal displacement, v = 0.50.

The surface displacements are shown in graphical form in the Figures 11.14, 11.15 and 11.16, for three values of v. In each case the displacements
are zero before the arrival of the compression wave, and after the passage of the shear wave, except for the singularity at the passage of the
Rayleigh wave. The values indicating the passage of the Rayleigh waves are not on scale, but their relative magnitude is in agreement with the
real value, as given in equation (11.200). It may be mentioned that the sign of these factors is erroneous in some earlier publications, as noted
by Kausel (2006).
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11.2 Constant line load

—0zz In this section the problem of a constant line load on a half plane, applied
F at time ¢t = 0 is considered, see Figure 11.17, with special attention to the
determination of the stress components (Verruijt, 2008). This is the dynamic
t equivalent of the classical Flamant problem of elastostatics (Timoshenko &
Goodier, 1970). It can be expected that in the dynamic case compression
z waves and shear waves will be generated, and probably Rayleigh waves near
the surface z = 0. It can also be expected that for very large values of time
the elastostatic solution will be recovered.
In this case the boundary condition for the normal stress on the boundary
is

2=0: 0., =—FH(t)(z), (11.201)

where F' is the magnitude of the load (per unit length), §(x) is a Dirac
delta function, and H(t) is Heaviside’s unit step function. This boundary
condition expresses that a line load of magnitude F is applied at time ¢ = 0,
and that this load then remains constant.

z

Figure 11.17: Half plane with line load.

The Laplace transform of the boundary condition (11.201) is

2=0 : 7., = ——0(x), (11.202)

or, when the delta-function is expressed as a Fourier integral,
_ P[> .
2=0: 0, = ~5r exp(—isax)do. (11.203)
™ —0o0

The difference with the impulse problem considered in the previous section is that the quantity Qs is now replaced by F'. This is in agreement
with the difference in the loading function. Dirac’s delta function is the derivative of Heaviside’s unit step function, and in the Laplace transforms
this results in multiplication by s.

It can be concluded that in this case the two constants in the general solution of the problem are, compare equations (11.44) and (11.45),

_F 202 +1/c2
= 2 B T 1/@)7 —

c, (11.204)
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F 2ary,
Cs=—— L . 11.205
"= s G 11/ — Aoy, (11.205)
For this problem the stresses will be elaborated, because the stresses are of particular interest in problems of geotechnical engineering. They
can be evaluated using De Hoop’s method, in the same way as in the previous section. In this case not all the details of the analysis will be
given, as reference can be made to the problem of the line pulse considered in the previous sections.

11.2.1 TIsotropic stress

The simplest quantity to evaluate is the isotropic stress ¢ = (04, + 0.2)/2. It is recalled from equation (11.41) that the Laplace transform of
this isotropic stress is

by 2 00
7= _(2—;%)8 /_OO Cpexp(—psz — isax) da (11.206)
Substitution of (11.204) into this expression gives
___(Q=-n)F /°° 202 +1/c2 ‘
- 1 - d 11.207
o o ) . (207 T 1)) — 4Py, exp[—s(vpz + iax)] do, ( )
where ) o
== e = s (11.208)

2 A+2u 2(1-v)

Using the same methods as in the previous section this integral can be transformed into the form

_ (1-n*F /00 (1/c2 = 2p*)v, H(t —tp)
SR/ L B € —st)dt, p=p, 11.209
’ mt  Jo {(1/02 —2p?)% + 4p27pvs} 2 — 12 ep(~st)di, p=p ( )

where p; is defined by the equation

e
pL= = P22, (11.210)

r r2

and, as before, t, =1/cp, ¥ = \/1/012,7*102 and 75 = \/1/02‘;7*102

The integral (11.209) is of the form of a Laplace transform, which means that the inverse Laplace transform is

___a-m®F { (1/c2 — 2p%)y, }H(t i) (11.211)
2 2 _ 9,22 2 ’ A '
el (1/c2 = 2p) +4p* 7. S 2 =22

This is the final expression for the isotropic stress.
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Calculation of numerical values
Using the dimensionless variables
E=ua/z, T=cst/z, T, =cstp/z=n\/14+E2, b=pec, (11.212)
it follows that the dimensionless forms of the quantities v, and v, are
Op = VpCs = VN2 — b2, g =rycs =V 1—0% (11.213)
The dimensionless form of equation (11.211) now is
1—262)\ /52 — b2 H(r—
oTE_ —772)3%{ (1= 2b7) /o — b } r=m) (11.214)
F (1—2b2)2 + 421 —b2\/n2 = b2 ) /72— 72
where
b= (£T+im)/(l+€2)' (11.215)

It may be noted that 7, = n4/1 + &2, the dimensionless arrival time of the compression wave.

Equation (11.214) can be used to produce numerical results, by a simple computer program. Great care should be taken that the sign of
the square roots is taken correctly, to ensure that the parameters 7, and v, correspond to the correct analytic continuation of their original

definition. A function (in C++, using complex calculus) to determine the value of the dimensionless isotropic stress omz/F as a function of the
parameters £ = x/z, T = ¢st/z and Poisson’s ratio v, is shown below. In this function the dimensionless parameters ¢, 7 and v are denoted by

X, t and nu.

double LineLoadS(double x,double t,double nu)
{
double s,n,nn,x1,tp2,t2;complex b,bb,bl,gp,gs,d,e;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt(nn) ;x1=1+x*x;tp2=nn*x1;t2=t*t;if (t2<=tp2) s=0;else
{
b=complex (x*t/x1, (sqrt (t2-tp2))/x1) ;bb=b*b;b1l=1-2xbb; gp=sqrt (nn-bb) ; gs=sqrt (1-bb) ;
d=b1l*gp;e=bl*bl+4*bb*gp*gs;s=-(1-nn)*real(d/e)/sqrt(t2-tp2);
}
return(s);

}

The argument of the parameters g, and g5 should be taken in the range (—,0), and the square roots should be calculated separately, to ensure

that the arguments are determined correctly.
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-1 T N T e -1

UTrZ/F e

Figure 11.18: Line Load - Isotropic Stress, v = 0, ¢st/2 =2 and v =0, c¢st/z = 10.
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omz/F 0 omz/F O
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Figure 11.19: Line Load - Isotropic Stress, v =0, ¢st/z =20 and v = 0.5, ¢st/z = 20.

Some examples are shown in the Figures 11.18 and 11.19. Although in these figures the maximum value of the dimensionless stress seems to be
1, larger values may occur in the immediate vicinity of the wave front, especially for small values of time. In this case of the isotropic stress the
wave front travels with the velocity of compression waves. For v = 0 the ratio of compression and shear waves is ¢,/cs = V2 = 1.4142. This
can be verified from Figure 11.18, where the wave front has reached a distance of about x/z = 2.66 at time cst/z = 2, which corresponds to
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cpt/T = 1, approximately. At time cst/z = 10 the disturbance at cst/z ~ 8.8 indicates the Rayleigh wave. In Figure 11.19 the value of time is
so large that the static results (Timoshenko & Goodier, 1970),
1
gz (11.216)

t : = - .
e F 14 22/22

are approached, for two values of v. This static solution is also shown in Figure 11.19, by dots. The agreement appears to be excellent. In general
the numerical values depend upon the value of Poisson’s ratio, but for very large values of time no such dependence is found, in agreement with

the static solution.

~

I \\‘5

—

cst/z cst/z

N

N\

N
.

109

1

-10 0
x/z

Figure 11.20: Line Load - Contours of isotropic Stress, v = 0.

A comprehensive view of the results is shown in Figure 11.20, on two different scales. The two figures show contours of the isotropic stress as a
function of z/z and c,t/z, in black if the stress is zero, in red if the stress is compressive, and in blue if the stress is tensile (assuming that the
line load is compressive). The interval between successive contours is Aowz/F = 0.1.

It is interesting to note that the Rayleigh wave can clearly be distinguished in the results shown in Figure 11.20, in the shape of the tensile
zone progressing towards infinity along the lines cst/x = 1.1. It appears that at very large distances from the point of application of the load,
the shape and the magnitude of the Rayleigh wave are preserved, even when near the center the static results have long been reached. This
is in agreement with the classical analysis of Rayleigh waves in the two-dimensional case, see for instance Achenbach (1973), or the analysis of

Rayleigh waves in Chapter 9 of this book.
The results shown in Figure 11.20 suggest that, for sufficiently large values of time, the solution consists of the elastostatic stresses plus a
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moving stress distribution representing the Rayleigh wave,

onz 1 m
ot 1 S , 11.217
cst/z > F 1+ 22/22 + 14+ (z — ¢t)?/(w2)? ( )

where ¢, is the velocity of the Rayleigh wave, and the coefficients m and w can be determined by fitting the curve with the exact results. For
v =0 it follows that m ~ 0.28 and w =~ 0.7.

Verification of the elastostatic limit

Although the numerical results have already been found to be in agreement with the elastostatic limit for very large values of time, it may
be illustrative to also verify this agreement analytically, by considering the limiting behaviour of the solution (11.214) of the elastodynamic
problem,

oz o (1-2b%)g, H(t—1p)
7 == )%{(1 _2b2)2+4b29pgs} NCE- (11.218)

where
b= (T +iVT2—12)/(1+ ), gp=pcs = V12—, gs=7s¢s = V102 1 =n/1+&2 (11.219)

If 7> 7, it follows from the first of these that b = (£ +i)7/(1 + £2), indicating that b tends to infinity if the dimensionless time parameter T
tends to infinity, assuming that the dimensionless distance £ remains finite, and does not also tend to infinity.

Taking into account that the real parts of g, and gs (the dimensionless forms of the parameters «y, and 7,) should be positive, and their
imaginary parts should be negative, as indicated in section 11.1, it now follows from equations (11.219) that

gp = —ib(1 —1?/2b%), g5 = —ib(1 — 1/2b%). (11.220)
In order to evaluate the limiting form of the denominator in equation (11.218) it may be noted that
(1—2b%)2 = 4b* —4b® +1, 4b%g,g, = —4b* + 2b*(1 + 1), (11.221)

so that
(1 —2b%)% + 4b%g, g, = —2b*(1 — n?). (11.222)

On the other hand, the numerator in equation (11.218) is

(E+9)T

2 BT 5 X 2i
(1 —2b%)g, = 2ib* = 2b R (11.223)
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It now follows that

(1—2b%)g T
»{ el B . 11.224
1 — 2077 + 5.0 ~ -+ (22
Finally it follows, substituting this result into equation (11.218), that
oo f ! (11.225)
— P = )
F 1+¢2

This is indeed the correct elastostatic solution, see equation (11.216).

Approximate analysis of the Rayleigh wave

It has already been observed from the complete solution that the line load produces Rayleigh waves, see Figure 11.20. These waves travel at
a constant speed ¢, and with constant shape to infinity, at both ends. This part of the solution may be further analyzed by investigating the
behaviour of the general solution (11.214) in the vicinity of the Rayleigh wave.

For this purpose the general solution (11.214) is written in the form

onz _ o Q%) _
where Q(b?) is defined by
Q%) = (1 = n*)(2b* = Vhy/\/72 — 72, (11.227)
and R(b?) is the Rayleigh function,
R(b?) = (20> — 1)? — 4b*hyyhs. (11.228)

In these functions the following parameters have been used

b fT—‘y—i\/T?—Tg

Ty fTe/m Tat/n m=nVlt e (11.229)
and
hy = igy = V02 =12, hy=ig, = Vb2 —1. (11.230)

The function R(b?) assumes a zero value for the real value b = 3, where

B=cs/er, (11.231)
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the ratio of the shear wave velocity cs to the Rayleigh wave velocity c,., see Chapter 9. The value of 3 depends upon the value of Poisson’s ratio,
but is always somewhat smaller than 1, indicating that the Rayleigh wave is always slightly slower than the shear wave.

In the solution considered here the value of b is complex, see equation (11.229), but it can be expected that for values of b close to § the
absolute value of R(b?) will be small, perhaps very small, so that the isotropic stress will be large. Using Taylor’s expansion formula the function
R(b?) for values of b close to 3 may be written as

R(b?) = —M(b* — 3*) = —2MB(b — ), (11.232)
where iR
M=—gsl (11.233)

The minus sign has been included in this definition to ensure that M > 0.
It follows from (11.228) and (11.230) that

dR 2b%h 20%h
— =4(2b* — 1) — dhyh, — —= — —L. 11.234
de ( ) P hp hs ( 3 )
The parameter M can be calculated by taking b = 3. With (11.233) this gives, making use of the knowledge that R(3?) = 0,
1—-14 2 1— 2\ 16
M= LA 8 = )8 (11.235)

52(2ﬂ2 _ 1)2

It may be noted that this is a real (and positive) value. Table 11.1 shows the values of n = ¢s/¢,, 8 = ¢s/c¢, and M, as functions of Poisson’s
ratio v, together with some other parameters, to be introduced later.
The Rayleigh wave is especially prominent for large values of £ and 7, with £ in the vicinity of /. If it is assumed that 7 > 1 and that
~ 7/ it follows that £ > 1, so that 1 +&* = €. It then follows, with the last of (11.229), that 7, ~ 17/, so that 7> — 72 ~ 7%(1 — n*/3?).
Furthermore, the value of h,, defined in the first of (11.230), can be approximated by h, ~ /32 —n?, so that h,//7% — 72 = /7. Tt follows
that the expression for Q(b?), see equation (11.227), can be approximated by

E>1,7>1 : QW) =~ QB ~ (1 —n?)(26%-1)5/T. (11.236)
In equation (11.232) the variable is b. With the first of (11.229), and assuming that £ > 1 and 7 > 1, this quantity can be expressed as

VT e (11.237)

-
E>1L, 7>1: b~ +
£ £
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v n=cs/cp | B=cs/cr M m wy Wy
0.00 | 0.707107 | 1.144123 | 1.381966 | 0.284432 | 0.786151 | 0.485868
0.05 | 0.688247 | 1.131612 | 1.512235 | 0.267257 | 0.793783 | 0.468064
0.10 | 0.666667 | 1.119688 | 1.664979 | 0.249677 | 0.803426 | 0.449846
0.15 | 0.641689 | 1.108377 | 1.844774 | 0.231905 | 0.815367 | 0.431277
0.20 | 0.612372 | 1.097700 | 2.057248 | 0.214161 | 0.829929 | 0.412415
0.25 | 0.577350 | 1.087664 | 2.309401 | 0.196660 | 0.847487 | 0.393320
0.30 | 0.534522 | 1.078269 | 2.610083 | 0.179596 | 0.868481 | 0.374040
0.35 | 0.480384 | 1.069504 | 2.970690 | 0.163133 | 0.893448 | 0.354613
0.40 | 0.408248 | 1.061351 | 3.406234 | 0.147398 | 0.923063 | 0.335064
0.45 | 0.301511 | 1.053786 | 3.936997 | 0.132478 | 0.958193 | 0.315397
0.50 | 0.000000 | 1.046778 | 4.591195 | 0.118420 | 1.000000 | 0.295598
Table 11.1: Rayleigh wave velocities, and some derived parameters.
Substitution into equation (11.232) gives
— /2 2g2
€1, 7>1: RO~ —QMB{T ;6 T = e } (11.238)
Taking £ = 7/ everywhere, except in the factor 7 — £0, gives
2 2M3° : 2/32
E>1,7>1: RO )xf[(s—f/ﬁ)—m/l—n /62]. (11.239)
Substitution of (11.236) and (11.239) into equation (11.226) gives
oz (1—n?)(26%-1) 1
E>1L,7>»1: —/— = . 11.240
FooaMp2/1-n?/p2 1+ (= 7/B)?/(1—n?/B?) ( )
Using the original variables this can be written as
w)z> 1, etfz>1 0 T~ i (11.241)

F 1+ (- )2/ (wp2)?
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where m is the maximum value of the Rayleigh wave disturbance,

2 2 _
-4 2771\4)2322?0,, 2 (11.242)

and w,, is a measure for the width of the Rayleigh wave disturbance,

wp =+/1—n?/52 (11.243)

It may be noted that this derived form of the approximation is in agreement with the suggestion of equation (11.217).

It can be seen from equation (11.241) that for « = ¢,t, the stress parameter omz/F = m, and that for = ¢,t+wpz this value is omz/F = m/2,
indicating that the distance 2wz is the total width of the disturbance at its medium height. The parameters m and w, depend upon the value
of Poisson’s ratio, see Table 11.1, but they do not depend upon £ or 7, thus confirming the well known property of Rayleigh waves in the two
dimensional case, that they are independent of the distance travelled.

-1 : e e -1

L Exact solution

) Exact solution

orz/F 0 onz/F 0

—150>:::::::0:::::::>50 —150>‘:::.:::O‘::::::>5O

Figure 11.21: Line Load - Isotropic Stress, v = 0, ¢st/z = 40 and v = 0.5, c¢st/z = 40.

To demonstrate the accuracy of the approximation two examples are shown in the Figures 11.21. These figures show the values of the
isotropic stress as a function of x/z, for ¢st/z = 40, and for two values of Poisson’s ratio, ¥ = 0 and v = 0.5. The exact results, calculated by
equation (11.214), are shown in the left half of the figures (in red), and the approximate results, calculated by a superposition of the steady
state solution (11.216) and the approximate formula for the Rayleigh wave disturbance (11.241), are shown in the right half of the figures (in
green). This final approximate formula, valid for any value of x/z, is

oz 1 m
~

~— . 11.244
F 1+ a2/22 + 1+ (x —¢t)2/(wpz)? ( )

cst/z>> 1
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It appears that the exact results and the approximate results can hardly be distinguished from each other, indicating that the approximate
results are very accurate. Actually, the maximum difference between the exact solution and the approximate solution is less than 0.01.

11.2.2 The vertical normal stress

Probably the most interesting quantity for soil mechanics practice is the vertical normal stress o,,. It is recalled from equation (11.38) that its
Laplace transform is

2 e8]
Tow = —Z—M / {(20® +1/c2)C, exp(—,s2) + 2a7,Cs exp(—s52) } exp(—isax) da. (11.245)
™ — 00

Substitution of the expressions (11.204) and (11.205) for the two constants C), and Cs gives

0,, =01+ 02+ 03, (11246)
where (202 ) 2)2
P[> 20 +1/c
01 = —— 2 — ) d 11.247
o1 271' [oo (2a2 + 1/02)2 - 40(271)75 eXP[ S(’sz + Zaw)] a7 ( )
B 4a2"/p'7’s
o 03 = — —S(7Vs ; da. 11.248
T2 r o= o0 /_ - B T 1/@) — daty,y, OPLs0s2 Hiar)da (11.248)

The evaluation of the two integrals (11.247) and (11.248) can be performed using the same procedures as for the first problem of this chapter,
the vertical displacement due to a pulse load.
The first integral, equation (11.247), leads to the expression

F 1/c? — 2p?)? H(t—t
oy = —— { g / s _ 2}7 ) 75 } ( p), p=p, (11.249)
T U(1/cd =272 + 4Py ) (212
where p; is defined by equation (11.210),
tr iz

The second integral, equation (11.248), leads to two contributions to the vertical normal stress, which are denoted by oo and o3. The part
09, which is generated by integrating along the curved parts of the integration path shown in Figure 11.3, is found to be

F Ap* 3 } H(t —ts)
oy = —— s 2 p=ps. 11.251
T { (/2 — 2022 + dpPyy, ) e VTP ( )
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where ps is defined by

tr iz
Dy = 3 + - 2 — 12, (11.252)
If ) )
z n

there is an additional contribution, denoted by o3, to the second integral, produced by integrating along the loop in the integration path shown
in Figure 11.3. This contribution is found to be

F 4Py }H(t—t)H(t —t)
s= G pls 9 p=ps, 11.254
i ™ {(1/03 —2p?)? + 4p*p7s N P ( )

where p3 is defined by

¢
ps=— -2 2P, (11.255)

r r
and t, is defined by

tofts = (xn+2V/1—=02)/r, ty/te <1. (11.256)

It may be noted that the function H(t—t,)H (ts —t) is equal to 1 in the interval ¢, < ¢ < t5 only, elsewhere it is zero. A factor H(z+/1 —n?—nz)
might be added to take into account that a contribution of the loop should be included only if the condition (11.253) is satisfied, but this is not
really necessary as it is ensured by the condition ¢, < t,, which is ensured by the factor H(t —t,)H(ts —t).

Calculation of numerical values

The vertical normal stress o, can be written as
0., = 01+ 09 + 03, (11.257)

where o7 is given by equation (11.249), o2 by equation (11.251) and o3 by equation (11.254). For the computation of numerical results these
formulas may be made dimensionless by introducing a reference stress F/z and a reference time z/c,, and using the dimensionless parameters

E=x/z, T=cst/z, Tp:Uv1+€2, Ts = 1+ &2, T =n§+V1-— 2,
a=csp, Gp=CsVp=VN2—0a2% gs=csvs=V1—a? (11.258)
The dimensionless form of the first term is

17222 2 _ 42 H(r —
N N = M)
F (1-2a2)2 +4a2V1— a2 —a?’) /72 — 72
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where

2 _ 12
P Vil (11.260)
1+4¢2
The dimensionless form of the second term is
201 _ p2 2 _p2 _
" AP (1 - b%)y/n? —b }H(T 7). (11.261)
F (1—262)2 +462/T = 02\/n2 — 2 ) /72 — 12

y 2 _ 12
_ Tty - (11.262)

= e

where

The dimensionless form of the third term is

o3mZ anc?(1 — (1 —2¢?)2%\/c2 —n? H(t — Tg)H(Ts — 7)

= ( 11.263
T 73 L T )[R By = B (11.263)
where
¢ — /T2 — 72
=T 112 11.264
¢ 1+¢&2 (11.264)

All factors in the expression (11.263) are real.

It should be noted that in the derivation of these expressions it has been assumed that > 0, so that £ > 0. Values for £ < 0 can be obtained
by using the symmetry of the problem.

A function to calculate the value of the dimensionless parameter o,,mz/2F as a function of the parameters { = x/z (with £ > 0), 7 = ¢,t/z
and Poisson’s ratio v, is shown below. In this function the dimensionless parameters £, 7, v and 7 are denoted by x, t, nu and n. The function
consists of three parts, as given by equations (11.259), (11.261) and (11.263).

double LineLoadSzz(double x,double t,double nu)
{
double s,sl1,s2,s3,n,nn,nnl,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,al,b,bb,bl,gp,gs,d,e;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ;nnl=sqrt(1-nn);
ts2=1+x*x;tp2=nn*ts2;ts=sqrt (ts2) ;t2=t*t;tq=n*x+nni;
if (t2<=tp2) s1=0;else
{
a=complex (x*t/ts2,sqrt (t2-tp2) /ts2) ;aa=a*a;al=1-2%aa;
gp=sqrt(nn-aa) ;gs=sqrt(l-aa) ;d=al*al*gp;e=al*al+d*aa*gp*gs;
sl=-real(d/e)/(2*sqrt (t2-tp2));
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}

if (t2<=ts2) s2=0;else

{
b=complex (x*t/ts2,sqrt (t2-ts2)/ts2) ;bb=bxb;bl=1-2%bb;
gp=sqrt (nn-bb) ; gs=sqrt (1-bb) ;d=4*bb* (1-bb) *gp; e=b1*bl+4*xbb*gp*gs;
s2=-real(d/e)/(2xsqrt (t2-ts2));

}

if ((t<=tq) || (t>=ts) || (tg>ts)) s3=0;else

{
c=(x*t-sqrt (ts2-t2))/ts2;cc=c*xc;f=(1-2xcc)*(1-2*cc);
g=4*n*ccx (1-cc)*f*xsqrt(cc-nn) ;h=f*f+16*cc*cc* (1-cc)*(cc-nn) ;
s3=g/(2*h*sqrt (ts2-t2));

}

s=sl+s2+s3;

return(s);

}

Some examples are shown in Figure 11.22. These figures show the vertical normal stress 0., as a function of £ = z/z, for v = 0 and for the
values c¢st/z = 1 and cst/z = 8, respectively. The results for ¢st/z = 1 indicate that for relatively small values of time non-zero values are

-1 -1

0.:T2[2F 0

.- .-

Figure 11.22: Line Load - Vertical Normal Stress, v =0, ¢,t/z = 1 (left), c¢st/z = 8 (right).
obtained only if ¢t > t,. For cst/z = 8, a discontinuity can be observed when the shear wave passes, and relatively large values are observed

somewhat later, probably at the passing of the Rayleigh wave.
It may be noted from Figure 11.22; for the case v = 0 and c¢st/z = 1, that the first wave arrives at x/z = 1. This means that then
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r/x = 1.414214. If it is assumed that this is the compression wave, arriving at time c,t/r = 1.0, it would follow that ¢,/c, = 1.414214, which is
precisely the known value of this ratio for v = 0.

Furthermore, from the numerical data used to produce the graph for the case v = 0 and ¢st/z = 8, it follows that the shear wave discontinuity
appears at x/z = 7.935, which can be verified, approximately, by inspection of the figure. This means that r/z = 7.998, so that this discontinuity
appears if cst/r = 8/7.998 = 1.00025, which is very close to the expected value of ¢st/r = 1. Secondly, it can be seen that a local maximum of
the stress appears if 2/z = 6.99, again determined from the actual numerical data. If it is assumed that this is the Rayleigh wave, arriving at
time ¢,t/x = 1.0, it would follow that ¢,/cs = 0.87375, which is very close to the exact value ¢, /c; = 0.874032. It appears that the solution not
only shows the correct asymptotic behaviour for ¢ — oo, but that also certain characteristic values are very close to the expected theoretical
values.

0:.:72[2F 0

. e

Figure 11.23: Line Load - Vertical Normal Stress, cst/z = 40, v = 0 (left), v = 0.5 (right).

Figure 11.23 shows the results for ¢st/z = 40, for two values of Poisson’s ratio: ¥ = 0 and v = 0.5. For such large values of time the results
approach the steady state (elastostatic) values, which are indicated by dots in the figure. These elastostatic values are (Timoshenko & Goodier,
1970)

Oy T2 2
: = — . 11.265
T — 00 fa EYRE ( )

The elastostatic values are independent of Poisson’s ratio v, which is confirmed by the two figures.
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Verification of the elastostatic limit

In addition to the numerical verification of the elastostatic limit, it may be illustrative to verify the elastostatic limit from the analytic solution
(11.214) of the elastodynamic problem, as described in its three components by equations (11.259), (11.261) and (11.263). It may be noted that
the third component vanishes after the arrival of the shear wave, so that only the first two components need to be taken into account. Both
these two components are unbounded for 7 — oo, but their sum should be finite. To verify this property, it is necessary to use series expansions
with at least two or three terms.

Assuming that the dimensionless time parameter 7 — oo, while the dimensionless distance £ remains finite, and using an analysis similar to
the one used for the isotropic stress, the first component of the vertical stress, as given by equation (11.259), can be approximated by

i | (Bn' —1)(€—i) | n*(E+4)
[ T 92 + 472(1 — 12 + 9,2 }} (11.266)

o2 2i72

F - Moy

The limiting behaviour of the second component, equation (11.261) for large values of 7 and finite values of £ is found to be

OoTr2 §R{ — 2i7? {1 3i n (Bn* = 1) —19) n £+ Z} } (11.267)

F Py E—i2l 272 T ar (1 =) 272
It follows from equations (11.266) and (11.267) that for very large values of time the vertical normal stress, which is the sum of the components
o1 and o9, is

T>1: (11.268)

0.7z (243 +if\ 2
PN e 1T aer

This is indeed the correct elastostatic solution, see equation (11.265).

Approximate analysis of the Rayleigh wave

For large values of time and the lateral coordinate = the solution for the vertical normal stress appears to have all the characteristics of a Rayleigh
wave. This property can be further analyzed by considering the behaviour of the analytical solution near the points where the denominator of
the expressions can be expected to become very small.

Using the same procedures as used for the analysis of the behaviour of the solution for the isotropic stress, earlier in this chapter, leading to
equation (11.241), it can be derived that an approximation for the vertical normal stress for large values of the time parameter 7 and the lateral

coordinate £ is
Oy, TTZ mq mo

2F 7 14 (z—cpt)?/(wpz)? 1 + (z — )2/ (ws2)?’

2 1\2
my — M wy = T2/, (11.270)

xfz>1, cst/z>1 : (11.269)

where
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2
my = 5]\2”1’7 ws = /1 1/82, (11.271)

where M is given by equation (11.235),
1—3%48(1—n?)p°
B +8(1-n")0 (11.272)
p2(26% — 1)
The two expressions in equation (11.269) are the approximations of equations (11.259) and (11.261) for large values of 7 = ¢st/z, and values of
¢ = x/z in the neighbourhood of ¢,t, where the Rayleigh wave has its peak value. The third part of the solution, equation (11.263), does not
play a role, because this applies only for values of time before the passage of the shear wave.

M:

-1

-1

0..Tz[2F 0

—150:‘::::::(:)“:::::::50 —150>::::::::(>)::.....:>50

Figure 11.24: Line Load - Vertical Normal Stress, ¢st/z = 40, v =0 and v = 0.5.

To demonstrate the accuracy of the approximation two examples are shown in the Figures 11.24. These figures show the values of the vertical
normal stress as a function of z/z, for ¢st/z = 40, and for two values of Poisson’s ratio, v = 0 and v = 0.5. The left half of the figures show
the exact results (in red), and the right half of the figures indicate (in green) the approximate results, calculated by a superposition of the
elastostatic solution (11.265) and the approximate formula for the Rayleigh wave disturbance (11.269). This final approximate formula, valid
for any value of £ = x/z, is

O, T2 1 mi ma
~ — — . 11.273
2F (14+22/22)2 14+ (x —ct)?/(wp2)? + 14 (z — et)?/(ws2)? ( )

cstfz>>1

As in the case of the isotropic stress the approximation appears to be very good. The maximum difference between the exact solution and the
approximate solution in this case is smaller than 0.01.
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11.2.3 The horizontal normal stress

It is recalled from equation (11.37) that the general expression for the Laplace transform of the horizontal normal stress 0., in an elastic half

plane is
s’ [ 2 2 i
Tow = o /_Oo{(2a — A pc,)Cpexp(—vpsz) + 2a7,Cs exp(—7s52) } exp(—isax) da.
Substitution of the expressions (11.204) and (11.205) for the two constants C, and C, gives
Ogg = 01+ 02 +03,

where
F o[> (20®+1/c2)(20% = M pcl)

__F ) .

T 5 | B @R daty,, OPLe(nE Hianlda.
L 40”7

7 7= "oy - s ) do.

72 27 /_oo (202 +1/¢2)2 — da2,7s exp|—s(vsz + iax)] da

(11.274)

(11.275)

(11.276)

(11.277)

The two integrals can be evaluated using the techniques of De Hoop’s method, in the same way as in the previous problems of this chapter.

The result is that the horizontal normal stress 0., can be written as the sum of three contributions,
Oy = 01+ 02 + 03.

The first term is, in dimensionless form,

o1 —§R{ (1—2a2)(1—2n2+2a2)\/772—a2}H(T—Tp)
(1 —2a2)2 4+ 4a2V/1 —a?\/n? — a2 ) /7% — Tg’

where

B TE 4+ i4/72 —Tp2
B 1+&

The second term is

lepYig _%{ 40%(1 — b?)y/n? — b? }H(T—Ts)
F (1—262)2 + 4621 — 02/n2 — b2 /72 — 712’

where

b TE +iy/T2 — 72

1+4&2

(11.278)

(11.279)

(11.280)

(11.281)

(11.282)
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And the third term is

o3TZ 4nc?(1 — ) (1 —2¢%)%\/c2 —n? H(t —719)H(1s — T)

_ 11.283
Ia (1 _ 262)4 + 1604(62 _ 772)(1 _ 62) 7_82 — 72 ’ ( )
where
_ /2 _ 3
e TV T (11.284)
1+¢2

Apart from the usual parameter 7 = ¢, /¢, the following dimensionless parameters have been used,

E=a/z,T=cst/z,mp =1+, 7 = V/1+E, 1y =En+ V1 —n2 (11.285)

In the derivation of the expressions it has been assumed that x > 0, so that £ > 0. Values for £ < 0 can be obtained using the symmetry of the
problem.

Calculation of numerical values

A function to calculate the value of the dimensionless parameter o,,7z/2F as a function of the parameters £ = x/z (with £ > 0), 7 = ¢st/z and
Poisson’s ratio v, is shown below. In this function the dimensionless parameters £, 7 and v are denoted by x, t and nu. The function consists
of three parts, as given by equations (11.279), (11.281) and (11.283).

double LineLoadSxx(double x,double t,double nu)
{
double s,sl1,s2,s3,n,nn,nnl,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,al,b,bb,bl,gp,gs,d,e;
nn=(1-2*nu) /(2% (1-nu) ) ;nnl=sqrt (1-nn) ;n=sqrt(nn) ;
ts2=1+x*x;tp2=nn*ts2;ts=sqrt (ts2) ;t2=t*t;tq=n*x+nni;
if (t2<=tp2) s1=0;else
{
a=complex (x*t/ts2,sqrt (t2-tp2)/ts2) ;aa=a*a;al=1-2%aa;
gp=sqrt(nn-aa) ;gs=sqrt(1l-aa) ;d=al*(1+2*aa-2*nn)*gp; e=alxal+d*aa*gp*gs;
sl=-real(d/e)/(2*sqrt (t2-tp2));
}
if (t2<=ts2) s2=0;else
{
b=complex (x*t/ts2,sqrt (t2-ts2)/ts2) ;bb=bxb;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=4*bb* (1-bb) *gp; e=b1l*bl+4*bb*gp*gs;
s2=real(d/e)/(2*sqrt(t2-ts2));
}
if ((t<=tq) || (t>=ts) || (tg>ts)) s3=0;else
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{
c=(x*t-sqrt (ts2-t2))/ts2;cc=c*c;f=(1-2%cc)*(1-2%cc) ;
g=4*n*ccx(1-cc)*f*xsqrt(cc-nn) ;h=f*f+16*cc*cc*(cc—nn)*(1-cc) ;
s3=-g/(2*¥h*sqrt (ts2-t2));
}
s=s1l+s2+s3;
return(s);

}

Some examples are shown in Figure 11.25. This figure shows the horizontal normal stress o,, as a function of x/z, for v = 0, for two values
of time: ¢4t/z = 1 and ¢st/z = 8. As in the case of the vertical normal stress, the ratio of the various waves, the compression wave, the shear
wave, and the Rayleigh wave, may be verified from the results shown in Figure 11.25, for the cases ¢st/z = 1 and c¢st/z = 8.

T S S S S S S S N S S S B -1

O22xT2/2F 0

}10: [ S S SN SN SRS S O [ S S NS SN SN SN S 10

Figure 11.25: Line Load - Horizontal Normal Stress, v = 0, ¢st/z = 1 (left) and c,t/z = 8.

The results for large values of ¢4t/z are approaching the elastostatic values, as shown in Figure 11.26. In general the numerical values depend
upon the value of Poisson’s ratio, but for very large values of time no such dependence is found, in agreement with the elastostatic solution,

Opy T2 x?/2?
t : = — . 11.286
T TR 1+ 22/22)2 ( )

This elastostatic solution is also shown in Figure 11.26, by dots. The agreement with the numerical results for ¢st/z = 40 appears to be excellent.
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Figure 11.26: Line Load - Horizontal Normal Stress, ¢st/z = 40, v = 0 (left), v = 0.5 (right).

Approximate analysis of the Rayleigh wave

For large values of time and the lateral coordinate x an approximation of the solution for the horizontal normal stress can be obtained in the
same way as used for the isotropic stress and the vertical normal stress in the two preceding sections.
Using the same procedures as before, an approximation of the horizontal normal stress for large values of the time parameter 7 = ¢t/z and
the lateral coordinate £ = z/z is found to be
OpxTTZ ms may

1, cst 1: ~ - , 11.287
/2> 1, cit/z> oF T+ (2 —ct)2/(wp2)? 1+ (x—ct)2/(wez)? ( )

where now

282 — 1)(26% + 1 — 2?
= O 2wy = TR, (1259

2
my = ﬁ]&”p, ws = /1 - 1/p2, (11.289)

and M is defined in equation (11.235).

The two expressions in equation (11.287) are the approximations of equations (11.279) and (11.281) for large values of ¢st/z, and values of
x/z in the neighbourhood of ¢,t, where the Rayleigh wave has its peak. The third part of the solution, equation (11.283), can be disregarded,
because this part vanishes after the passage of the shear wave.
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Figure 11.27: Line Load - Horizontal Normal Stress, ¢st/z = 40, v = 0 and v = 0.5.

To demonstrate the accuracy of the approximation two examples are shown in the Figures 11.27. These figures show the values of the
horizontal normal stress as a function of z/z, for ¢st/z = 40, and for two values of Poisson’s ratio, ¥ = 0 and v = 0.5. The left half of the figures
show the exact results (in red), and the right half of the figures indicate (in green) the approximate results, calculated by a superposition of the
steady state solution (11.286) and the approximate formula for the Rayleigh wave disturbance (11.287). This final approximate formula, valid
for any value of x/z, is

27,2
OpuT2 x?/z ms o
cst/z>1 ~— + - .
st/ 2F (14+22/22)2 14+ (x —ct)2/(wpz)? 14 (x —cpt)?/(wsz)?
As in the case of the other stress components the approximation appears to be very good. The maximum difference between the exact solution
and the approximate solution in this case is smaller than 0.02.

(11.290)

11.2.4 The shear stress

It is recalled from equation (11.39) that the Laplace transform of the shear stress 0., in an elastic half plane is

. 2 00
Top = —Zg—s / {2a7,C, exp(—7,52) + (202 +1/¢2)Cy exp(—vs52)} exp(—isaz) da. (11.291)
a — 00

Substitution of the expressions (11.204) and (11.205) for the two constants C, and C; gives

Ogy, =01+ 029, (11292)
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where
_ F [ 20y, (202 4+ 1/c2)
o1 = —
210 J_ o (202 +1/¢2)2 — da®y,vs

exp[—s(vpz + taz)] da, (11.293)

F [ 20y, (202 4+ 1/c2)
2mi J_ o (202 +1/c2)? — 427,75

g9 =

exp[—s(vsz + iax)] da. (11.294)

The two integrals can be evaluated using the techniques of De Hoop’s method, in the same way as in the previous problems of this chapter.
The result is that the shear stress 0., can be written as the sum of three contributions,

Opr = 01 + 02 + 03. (11.295)

The first term is found to be

2F pyp(1/cf — 2p%) H(t—t
o1 = —— { 2 L N2 2 } ( p)a p =D, (11296)
m o U(1/ef = 2p2)? +4pPys ) (/12— #2
where
p1 = (tz +iz\/t2 = 2)/r?, (11.297)
and
CBYE B R Wy e (1.209)
In dimensionless form equation (11.296) can be written as
o172 a(n? —a?®)(1 — 2a?) H(t—1p)
= —?R{ } ; (11.299)
2F (1—2a%)%+4a2V1 —a?\/12 —a®) /72 — 72

where
a=(Er+iyT2—72)/(1+8&). (11.300)
The second term is found to be
2F { Pyps(1/cs — 2p%) } H(t—ts)
09 — — =
S (1/c2 = 2p?)2 4+ 4p2ypys /12 — 427 b=r

(11.301)

where
pa = (to +iz\/t2 —2)/r% (11.302)

and 7, and s can be expressed into the variable p by the same relations as before, see equations (11.298).
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The dimensionless form of equation (11.301) is

ooz _%{ bv1 — b2\/n? — b2(1 — 2b?) }H(T—TS) (11.303)
2F (1—2b2)2 + 4021 — 02\/n2 — b2 /72 =72’ '
where
b= ((r+iy/T2—72) /(14 €2). (11.304)
Finally, the third term is found to be
2F pypys(1/c2 — 2p?) H(t—ty)H(ts —t)
=2 g 5 = 11.305
03 - \Y{ (1/c2 —2p2)2 + 4p2’}/p%} 2 » P = D3, ( )
where
p3 = (wt — 24/t2 —12) /72, (11.306)
and the time ¢, is given by
te/ts = (xn+2/1—02) /1, t4/ts <1. (11.307)
The dimensionless form of equation (11.305) is
o3mE c(1-223V1—c2\/c2—n2  H(t—1)H(1s — 7) (11.308)
2F (1 —=2e2)* 4+ 16¢*(1 — c2)(c — n?) NG ’ '
where c is defined by
c=(¢r— /T2 —72)/(1+ ). (11.309)

In the equations given above the following dimensionless parameters have been used,

E=a/z,7=cst)2, 7 =1+ E,7, =01+ 2,7, =En++/1 -1 (11.310)

This means that the depth z is used as the length scale, and that the value of z/c is used as the time scale.
In the derivation of the expressions it has been assumed that « > 0, so that £ > 0. Values for £ < 0 can be obtained using the antisymmetry
of the shear stress.
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Calculation of numerical values

A function to calculate the value of the dimensionless parameter o,,m2/2F as a function of the parameters £ = x/z (with £ > 0), 7 = ¢,t/z and
Poisson’s ratio v, is shown below. In this function the dimensionless parameters &, 7 and v are denoted by x, t and nu. The function consists
of three parts, as given by equations (11.299), (11.303) and (11.308).

double LineLoadSxz(double x,double t,double nu)
{
double s,s1,s2,s3,n,nn,nnl,tp2,ts2,ts,tq,t2,c,cc,f,g,h;
complex a,aa,al,b,bb,bl,gp,gs,d,e;
nn=(1-2*nu) / (2*(1-nu) ) ;n=sqrt (nn) ;nnl=sqrt(1-nn);
ts2=1+x*x;tp2=nn*ts2;ts=sqrt (ts2) ; t2=t*t;tq=n*x+nnl;
if (t2<=tp2) s1=0;else
{
a=complex (x*t/ts2,sqrt (t2-tp2) /ts2) ;aa=a*a;al=1-2%aa;
gp=sqrt(nn-aa) ;gs=sqrt(1l-aa) ;d=a*(nn-aa)*al;e=al*al+d*aa*gp*gs;
sl=-real(d/e)/sqrt(t2-tp2);
}
if (t2<=ts2) s2=0;else
{
b=complex (x*t/ts2,sqrt (t2-ts2)/ts2) ;bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=b*bl*gp*gs;e=bl*bl+4*bb*gp*gs;
s2=real(d/e)/sqrt(t2-ts2);
}
if ((t<=tq) || (t>=ts) || (tg>ts)) s3=0;else
{
c=(x*t-sqrt (ts2-t2))/ts2;cc=c*xc;f=(1-2xcc)*(1-2*cc);
g=n*c*(1-2*xcc)*f*sqrt (1-cc)*sqrt (cc-nn) ;h=f*f+16xcc*cc* (1-cc)*(cc-nn) ;
s3=-g/ (h*sqrt (ts2-t2));
}
s=s1+s2+s3;
return(s);

}

Some examples are shown in Figure 11.28. This figure shows the shear stress o,. as a function of z/z, for v = 0, and for two values of time:
cst/z =1 and cst/z = 8. Again, the ratio of the various waves, the compression wave, the shear wave, and the Rayleigh wave, may be verified
from Figure 11.28, noting, for instance, that for v = 0 the theoretical ratios are ¢,/c, = 1.4142 and ¢, /cs = 0.8740.
The results for large values of ¢st/z are approaching the static values, as shown in Figure 11.29. In general the numerical values depend
upon the value of Poisson’s ratio, but for very large values of time no such dependence is found, in agreement with the elastostatic solution,
Opz T2 x/z

¢ : S . 11.311
T Top (1 + 22/22)2 ( )
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-1 -1

0emz/2F 0

x)z x/z

Figure 11.28: Line Load - Shear Stress, v = 0, ¢st/z = 1, (left) and ¢st/z = 8.

0222 /2F 0

—]10::::::::(:)::::::::10 _]10===:":==(=)==:":===10

Figure 11.29: Line Load - Shear Stress, c¢st/z = 40, v = 0 (left), v = 0.5 (right).

This elastostatic solution is also shown in the figure, by dots. As before, the agreement is excellent.
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Approximate analysis of the Rayleigh wave

For large values of the time parameter 7 = ¢4t/z and the lateral coordinate x/z an approximation of the solution for the shear stress can be
obtained in the same way as for the other stress components in the preceding sections. This approximation is

OpaT2 ms(z — ¢pt)/(wp2) me(z — ¢rt)/(ws2)
1, eot 1 ~— , 11.312
/2> 1, etfz> 2F T+ (¢ — )2/ (wp2)? 14 (@ — cd)2/(ws)? (11.312)
where now )
28 -1
my=20 1w, = T, (11.313)
26% -1
mg = ( 52M )wp7 ws =\/1— 1/, (11.314)
Ws

and M is defined in equation (11.235).
The two expressions in equation (11.312) are the approximations of equations (11.299) and (11.303) for large values of ¢st/z, and values of
x/z in the neighbourhood of ¢,t, where the Rayleigh wave has its peak.

-1

02:72/2F 0

350 : : : : : : : : 0 : : : : : : : : 50 }50 : : : : : : : : 0 : : : : : : : : : 50
x/z x/z

Figure 11.30: Line Load - Shear Stress, ¢st/z = 40, v =0 and v = 0.5.
To demonstrate the accuracy of the approximation two examples are shown in the Figures 11.30. These figures show the values of the vertical

normal stress as a function of z/z, for ¢st/z = 40, and for two values of Poisson’s ratio, ¥ = 0 and v = 0.5. The left half of the figures show the
exact results (in red), and the right half of the figures indicate (in green) the approximate results, calculated by a superposition of the steady
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state solution (11.311) and the approximate formula for the Rayleigh wave disturbance (11.312). This final approximate formula, valid for any

value of x/z, is

02 x/z ms(z — crt)/(wp2) me(x — cpt)/(wsz)
2F 7 (1 +22/22)2 1+ (x—ct)2/(wp2)? | 14 (z— cpt)2/(wez)?

Again the approximation appears to be good, with a maximum error of about 0.03. The largest error occurs for v = 0.5 just before the arrival

of the Rayleigh wave and after the passage of the shear wave.

cst/z>1 ¢

(11.315)

Conclusion

In this chapter the solution of the problem of a line pulse on an elastic half space has been reconsidered. The known solution by De Hoop (1960)
and Eringen & Suhubi (1975) for the displacements of the surface has been rederived, and expressions for the displacements in an arbitrary
point of the half space have been derived.

As a second problem the elastodynamic equivalent of the Flamant problem, a constant line load on the elastic half space, has been considered.
Closed form expressions for the stress components have been derived.

The solutions have been validated by considering the limiting state for ¢ — co. Special attention has been given to the generation of Rayleigh
waves in the vicinity of the surface. In general, for large values of time the solutions appear to consist of the elastostatic stress distribution plus
a constant Rayleigh wave disturbance near the surface. Although the constant value of the amplitude and the shape is a well known property
of Rayleigh waves in the two dimensional case, it has been shown that simple expressions for the magnitude and the width of the Rayleigh wave
disturbance can be derived, for each of the stress components. These approximations appear to be in very good agreement with the complete
analytical solution. The approximate solutions may be useful for the (approximate) analysis of the solution of problems with a more general
type of loading. Some examples of this will be given in the next chapter.

Problems

11.1  Verify that the solutions given in section 11.2 for o, 0., and o, satisfy that o = (0., + 042)/2.
11.2  Verify the same property for the approximate solutions, given in equations (11.244), (11.273) and (11.290).

11.3  Verify, analytically, that the solution for the vertical normal stress caused by a line load, as given in equation (11.214), with its three
components given in equations (11.259), (11.261) and (11.263), satisfies the boundary condition that o,, = 0 for z = 0, and |z| > 0.

11.4 Verify that the solution for the shear stress caused by a line load, as given in equation (11.295), satisfies the boundary condition that for
z = 0 the shear stress is zero, 0., = 0.



Chapter 12

STRIP LOAD ON ELASTIC HALF SPACE

In this chapter the problem of a strip load on the surface of an elastic half plane is considered, i.e. problems in which the elastic half plane is loaded

[T ke

z

Figure 12.1: Half plane with strip load.

gram STRIPLOAD.

12.1 Strip pulse on elastic half plane

by a load that is constant over an area in the form of a strip of finite width,
see Figure 12.1. As a function of time the load may be an impulse load or a
step load. The case of an impulse load will be considered first. The step load
will be considered later, with the solution being derived from the solution
for the impulse load by an integration over time.

The solutions will be obtained as an application of De Hoop’s method
(De Hoop, 1960, 1970), using an extension due to Stam (1990) to generalize
the line load to a loading over a strip of finite width, see also Verruijt (2008).

Emphasis will be on the determination of the stress components as func-
tions of depth and time, as these are of main interest in soil engineering.
For very large values of time the results for a step load should be in agree-
ment with the elastostatic solutions, and this condition will be used as a
validation of the elastodynamic solutions. Also, the Rayleigh wave should
be recovered at large distances from the load, and should conform to its
required behaviour.

A computer program for the constant strip load is available as the pro-

The first problem to be considered is the case of a strip pulse on an elastic half plane, see Figure 12.1. In this case the boundary conditions are

{ —qd(t), i [2] <o,
z=0: 0,, =

2=0: 0,, =0, (12.1)

(12.2)
0, if |z| > a.

282
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The second boundary condition expresses that there is a homogeneous load on the strip between the points * = —a and z = a in the form of a
pulse of very short duration.
The Laplace transform of this condition is

—q, if|z|] <a,
2=0: G, = . (12.3)
0, if|z]> a.

This can also be written in the form of a Fourier integral,

2=0: 5, =1 /oo sin(saa) exp(—isaw) | (12.4)
T J)_ o «a

It is recalled from the previous chapter, see equations (11.35) and (11.36), that the general solution of the elastodynamic problem for a half
plane is, in the form of the Laplace transforms of the two displacement components,

gl
|

% / {aC) exp(—svpz) + vsCs exp(—s7s2)} exp(—isaz) da, (12.5)

g|
I

Qi / {1pCpexp(—s7pz) + aCs exp(—svs2)} exp(—isaz) da. (12.6)
a — 00

Furthermore, the Laplace transforms of the stress components are, from equations (11.37), (11.38) and (11.39),

2 o0
Tow = 28— / {(2ua® — /\/ci)Cp exp(—svpz) + 2uaysCs exp(—s7vs2) } exp(—isaz) da, (12.7)
T — 00
ps® [
Tor = — 5 / {(202 + 1/c2)C, exp(—s7,pz) + 2075Cs exp(—s7s2)} exp(—isax) da, (12.8)
_ Z/JSQ > 2 2 .
Tow = =5~ {207, Cp exp(—s7p2) + (20° + 1/¢5)Cs exp(—s7s2) } exp(—isazx) da. (12.9)

The Laplace transform of the isotropic stress o = %(om + 0,,) is given by equation (11.41),

A+ p)s?

o=
2
2ﬂ'cp

oo
/ Cpexp(—sypz — isax) da. (12.10)
— o0
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Using the boundary conditions (12.1) and (12.4) the two integration constants C, and Cj in the general solution are found to be

c, =22 sin(saa) . 20% 4 1/c; : (12.11)
ps® a (202 41/c¢3)? — Aoy,
2q sin(saa) 2ay,
C, =L . 12.12
wus? e (202 +1/c2)? — 4o, ( )
The stress components will next be evaluated.
12.1.1 The isotropic stress
The simplest quantity to evaluate is the isotropic stress. With (12.10) and (12.11) it is found that
T 1—n? [* sin(saa) 202 +1/c? .
- =— 5 — d 12.13
s~ L e ey, evlsye iaollda (12:19)
where 72 = ¢2/c2 = (1 —2v)/[2(1 —v)].
Following a suggestion by Stam (1990), the function sin(saa) is written as [exp(isaa) — exp(—isaa)]/2i. This gives
T 1-n* _ _
—=——{9(z+a)-glz—a)}, (12.14)
q n
where 24 1)
1 <1 208 +1/c2
G(z) = —— - E - o)) do. 12.15
g(z) o C}z) [m o (202 +1/¢2)% — 4oy, exp[—s(ypz + iax)] do ( )

The integrand of this expression is a rather complicated function of the Fourier parameter a, but the Laplace transform parameter s appears in
one place only, namely as a linear factor in the argument of the exponential function. This suggests the probable success of De Hoop’s inversion
method.

The value of this integral depends upon the sign of the variable x. The two possibilities will be considered separately.

The case x > 0
Using the substitution p = i« the integral (12.15) can be written as

1 /"“ 1 1/c2 — 2p?

J(x) = —— — exp|—s(vpz + px)| dp, 12.16
9(z) 2w | s W@ =277 + P, xp[—s(vpz + px)] dp (12.16)
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where now 7, and v, are related to p by the equations
=1/ —p*, =1/ -p (12.17)

As in the previous chapter, the integration path in the complex p-plane is modified such that the integral obtains the form of a Laplace transform
integral. For this purpose a parameter ¢ is introduced (later to be identified with the time), defined as

t =vpz + px, (12.18)

with ¢ being real and positive, by assumption. The shape of the transformed integration path remains undetermined in this stage.
The integrand of the integral in equation (12.16) has singularities in the form
3(p) of branch points in the points p = £1/¢, and p = £1/c¢,, simple poles in the
points p = +1/¢,, where ¢, is the Rayleigh wave velocity, which is slightly
smaller than the shear wave velocity, and a simple pole in the point p = 0.
1 It may be noted that ¢, > ¢s > ¢, so that 1/¢, < 1/¢s < 1/c,. The original
integration path from p = —ioco to p = oo is now modified to the two paths
p1 and pg shown in Figure 12.2, with the parameter ¢ varying along these
two curves from some initial value to infinity.

—1/e,—1/c—1/cp /e, 1/cs 1/c, (o) It follows from (12.18) and the first of (12.17) that
b p
r?p? — 2tpx + t* — 2’2/612) =0, (12.19)
where
p2 r? = 2% 4 22, (12.20)

The quadratic equation (12.19) has two solutions for p,

tr iz
pr=—5+— M7 (12.21)

r r

.
pr= = — =12, (12.22)

P2 2

Figure 12.2: Modified integration path, for > 0.

where
tp, =1/cp, (12.23)

If it is assumed that t, < ¢ < co the two branches p; and ps shown in Figure 12.2 form a continuous path, with the two branches intersecting
for t = t,, where p = p1 = pa = (x/r)(1/c,), which is a point on the real axis, always located between the origin and the first singularity at
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p = 1/cp. For the two integration paths to be equivalent, the contributions of the parts of the closing contour at infinity must vanish. This will
indeed be the case if x > 0. It has been assumed that the original integration path, along the imaginary axis, passes to the right of the pole in
the origin, see Figure 12.2. This should then also be the case for the case z < 0, which will have consequences for the contribution of this pole,
of course.

It can be shown that along the path p;

Ldp  tr\/t? —t2 +ixzt;

= . (12.24)
pdt r2(t2 — 22/c2)\ 12 — 12
This means that the contribution of the path p; to the integral (12.16) is
1 212 — 12 + dxat? 1/c% —2p?
>0 g(z) = 5—— / P d 5 /062 5 P 5 exp(—st) dt. (12.25)
2micy Ji, r2(12 — 22/c2)\/t2 — 2 (1/c2 —2p?)% + 4p* s

Along the path p, all quantities will be complex conjugates, but the path is in inverse direction, so that if one writes g,(x) = A 4 iB then
go(x) = —(A —iB). The sum of these two contributions is 2iB. It now follows that the sum is

exp(—st) dt. (12.26)

2 T2 L iat? 2 2
:?(90):—1 %/Oo r” 17 — b + ety 1/cg —2p
t

r2(t2 — 22/c2) 12 _ 2 (1/¢2 —2p2)% + 4p>7,7s

This expression happens to be in the form of a Laplace transform. Inverse Laplace transformation gives

1 C\{ tr2\/t2 — 2 +ixzt) 1/¢2 —2p?

N)
w2 U2 (e2 = 22/e2) /1 — 12 (1/c2 = 2p%)% + 4pP s

}H(t —t,), (12.27)
For the calculation of numerical values it is convenient to introduce the dimensionless parameters

f = .Z‘/CL, C = Z/Cl, T= cst/av pP=V £2 +CQ> Tp = 1P, Bp =GCsp, N = Cs/cp' (12'28)

The parameter (3, is a dimensionless complex variable defined by

Bp = (6 +iCV/ T2 = n2p?) /P, (12.29)

as follows immediately from equation (12.21). The important parameters 7, and 7, can now be represented by their dimensionless equivalents

9p = CsVp = V 772 - 3) gs = CsVs = 1- ﬁg (1230)
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Using these parameters equation (12.27) can be written as

§>0: g(z) = h(§), (12.31)

with

/72— 10+ inEC (1-26))
72777%2)\/@ (1-232)2 +Zﬂ§gpgs}H(T_77/’)» (12.32)

It may be noted that in equation (12.32) the parameter £ > 0, and the only relevant values of 7 are those for which 7 > np.

me = 2 5{;

The case x < 0

If the parameter < 0 the integration path must be transformed by moving the integration path to the left, in order that the contributions by the
arcs at infinity vanish. This means that the pole at p = 0 will be passed,
S(p) resulting in a contribution to the integral, see Figure 12.3. In this figure the
transformed integration path is indicated by the path consisting of the curves
p2 and p1, with a loop around the pole. It can be shown that the result of the
1 integration along ps and p; will be the same as before, see equation (12.27).
However, to this expression the contribution by integrating around the pole
must be added. Along this path the integration variable p is

,1=/crfl cs—1/ 1/c, 1/cs 1/=cT R(p) p = eexp(if), (12.33)

where € — 0, and the angle 6 runs from 6 = —7 to 8§ = +m along the small
circle around the pole. This contribution can be determined by considering
the limiting value of the Laplace transform g(x) as defined in equation (12.16)
for p — 0. This leads to an additional contribution

P2
Ag = n? exp(—sz/cp). (12.34)
Inverse Laplace transformation gives
Figure 12.3: Modified integration path, if z < 0. Ag=n>6(t—z/cp). (12.35)

Because T = ¢st/a this means that there is a second contribution to the function h(§),

Ah=0(T — {1 - H(&)}, (12.36)
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where the factor 1 — H () has been addded to indicate that this contribution applies only if £ < 0, and where it has been assumed that
§(t —z/cp) = (cs/a)d(T — n¢), because both delta functions should have an area equal to 1,

+o0 +oo
/ St —z/cp) dt:/ 5(r—n¢)dr =1. (12.37)

—00 —00

General result

The results for £ > 0 and £ < 0 can be combined in the single formula

20
9(6,¢,7) = L5 h(e, ¢, 7) + AR, ¢, 7)) (12.38)

a

Using the general formula (12.38), the expression for the isotropic stress (12.14) becomes, after inverse Laplace transformation,
o_i = (1 - 772){h(5 + 13 CvT) + Ah(f + 13 CvT) - h(f - ]-7 C»T) - Ah(f - ]-7 C?T)}7 (1239)
0

where o is a reference stress, defined by

oo = L5 (12.40)
a

It may be noted that the physical dimension of ¢ is a stress multiplied by time, because the physical dimension of the delta function §(¢) in the
boundary condition (12.2) is the inverse of time, to ensure that its integral over time is 1. Thus, the physical dimension of oq is indeed a stress.

Computer program

The isotropic stress can be calculated as a function of £, ¢, 7 and v by the function StripPulseS shown below. This function uses the functions
delta and h, which are also shown. The delta function is approximated by a parabolic arc of small width and of unit area.

double delta(double t,double z,double e)

{

double f;if ((t<z-e)||(t>z+e)) f=0;else f=3*(exe-(t-z)*(t-z))/(4*exexe) ;return(f);
}

double h(double x,double z,double t,double nu)

{

double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;complex a,b,bb,bl,gp,gs,d,e;

pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;eps=0.001; tt=t*t ; XxX=x*X ; ZZ=2*Z ; FIT=XX+2Z;
tr=tt-nn*rr;tz=tt-nn*zz;if (tr<=0) s=0;

else
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{
a=complex (t/tz,nn*x*z/(tz*sqrt(tr))) ;b=complex(t*x/rr, (z/rr)*sqrt (tr)) ;bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=a*bl;e=bl*bl+4*bb*gp*gs;s=imag(d/e)/pi;

if (x<0) s+=delta(t,n*z,eps);
return(s);
}
double StripPulseS(double x,double z,double t,double nu)
{
double s,nn;
nn=(1-2%nu)/ (2% (1-nu)) ;s=(1-nn) * (h(x+1,z,t,nu)-h(x-1,z,t,nu));
return(s);

}

ot
ot

o /oo cst/a \ 10_ c.t/a

s : : : : : : : : 5 s
J

Figure 12.4: Strip Pulse - Isotropic Stress, z/a =0, z/a =1; v =0 (left) and v = 0.45 (right).

Figure 12.4 shows the isotropic stress as a function of time, in the point z/a = 0, z/a = 1, for two values of Poisson’s ratio: ¥ = 0 and v = 0.45.
It appears that first the compressive wave below the load arrives, at the time ¢ = z/c,, and then some time later (actually a factor V2 later),
the negative compression waves emanating from the end points of the load arrive at this point. In this case of the isotropic stress, there is no
shear wave.
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12.1.2 The vertical normal stress

Another interesting quantity is the vertical normal stress ... It is recalled from equation (12.8) that the Laplace transform of this quantity is
— s’ [ 2 2 ;
oz = =5~ {(20” + 1/¢3)Cp exp(—psz) + 2a7,Cs exp(—vssz)} exp(—isax) da. (12.41)
a — 00

Substitution of the expressions (12.11) and (12.12) for the two constants C,, and C; gives

Oex = 01+ 02 (12.42)
where ( | ( 2 / 2)2
_ q sin(saa 202 4+ 1/c? '
R ( - d 12.43
o1 T [m o (202 + 1/¢2)2 — da2,7s exp|—s(ypz + iax)] do, ( )
_ g [ sin(saa) 402557y .
B 50 dav, 12.44
T /—00 @ (202 +1/c2)? — 4oy, exp[=s(ysz + iox)] do ( )

These two integrals will be considered separately. It may be noted that the integrand of the first integral has a singularity at a = 0, which
means that special care must be taken when transforming the integration path. When passing the origin, the contribution of the pole must be
taken into account. The integrand of the second integral has no such singularity.

The first integral

Using the expression sin(aa) = [exp(isaa) — exp(—isaa)]/2i, the first integral can be written as

71 =q{g:(z +a) —7g,(z — a)}, (12.45)
where (20 Je2y2
_ 1 [>1 20 +1/c; )
-— [ = - d 12.46
0= 5 | o ey L e, Sl + o)) do (12.46)
or, with p = i, _
_ 1 /1 (1/c% — 2p?)?
- — [ = : - dp. 12.47
7= 5 [ T e i Pl +pe)ldy (12.47)

Comparison with the expression (12.16) for the function g(z) in the case of the isotropic stress shows that the two expressions are very similar.

The only differences are a constant factor 012, and the square of the factor 1/c¢? — 2p%. This means that application of the same method to
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transform the integration path in the complex p-plane will give, in this case,

1 tr2\/t2 — 2 + ixzt? 1/c2 — 2p?)?
>0 ¢ gi(2) = f%{ P P 2( /052 = ) . }H(t—tp), (12.48)
T Ur2(12 = 22 /e2) /12 — 12 (1/c = 2p%)% + 4pP s
where, as before,
AT (12.49)
tp, =71/cp. (12.50)

Using the dimensionless parameters defined in equations (12.28) and (12.30) the function g;(z) can be expressed as

§>0: gi(z) = % hi(§), (12.51)
with X . — rec (122
_ Loy vt —ntpt +ian - B
ule) = m \s{ (12 = n2¢2)\/T2 —n2p? (1 —267)? +p45;39p95 } H(r =np). (12.52)

Here the parameter [, is the dimensionless complex variable defined by equation (12.29),

Bp = (T€ +iC/T2 = 02p?) [ p?, (12.53)
and the parameters g, and g, are defined by equation (12.30), i.e.
gp = V1* — B2, gs =1 -2 (12.54)

For z < 0 (or £ < 0) the modified integration path again includes the small circle around the pole at the origin p = 0. Using the same procedures
as for the isotropic stress, the contribution of this pole is found to be

Ahy(§) = 0(r —nO){1 — H(&)}- (12.55)

Combination of equations (12.52) and (12.55) finally gives

TR it (1280
72— n2¢2)\/72 — n2p2 (1 —267)* + 487 9p9s

- }H(T—np)+5(7—n€“){1—H(é)}, (12.56)

h1(§) = 1${(

which is valid for all values of &.
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With (12.45) and (12.51) the expression for the first term oy is

o=l ) =), (12.57)

where the function hq(€) is given in dimensionless form in equation (12.56), and where oy is the reference stress defined by equation (12.40), i.e.

o = q:S. (12.58)

The second integral

Using the expression sin(aa) = [exp(isaa) — exp(—isaa)]/2i, the second integral, equation (12.44), can be written as

02 = ¢{ga(z +a) = gy(z —a)}, (12.59)
where ) - A
_ AYpYs .
- __— —5(s da. 12.
Jo () 5 [ BaZ ¥ 1) — Ity exp[—s(vsz + tax)] da (12.60)

The integration parameter is renamed by the substitution p = ia. This gives

_ 1 / 10 Aprs
210 J oo (1/€2 = 2p%)2 + 4p? s

92 () exp[—s(vsz + px)] dp, (12.61)

where
= VIEZ—1% v =P (12.62)

The integral (12.61) can be evaluated in the same way as the integral o2 in equation (11.248) in the previous chapter, the main difference being
a factor p in the numerator of the integrand. The result, which will not be presented in detail here, is that the function g(z) can be expressed
as

ga(a) = = {ha(€) + ha(§)}, (12.63)

where ho(€) is the dimensionless contribution of the integration along the curved parts p; and po in Figure 11.3, and h3(§) is the possible
contribution of the integration along the loop on the real axis around the branch point p = 1/¢,. The expression for hs(&) is found to be

_ 1 4089 gg H(T - P)
(O = - M G s i) (1264
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where the dimensionless complex parameter (3, is defined by

B = (1€ +iC\/T2 = p?) [ p?, (12.65)
and the parameters g, and g, are defined by
G =Vn* =02,  gs=+1-p2 (12.66)
The expression for hg(€) is found to be

L1 A48,(1 =91 = 267)%/B; = H(r—7) —H(T —7) o
7 (1 —=262)4 +1664(1 — 82)(B2 — n?) T2 — 712

h3(§) = (& —np), (12.67)

where the dimensionless real parameter 3, is defined by

By = (67 = ¢V p? = 72) /7, (12.68)

and the dimensionless parameters 7, and 7, are defined by

T =18+ (V1=1n% 75 =p. (12.69)

Equations (12.64) and (12.67) apply only for > 0 or £ > 0. For z < 0 the value of g2(z) can be determined by noting that ga(—z) = —ga(x),
which can be derived from the definition (12.61) when the integration variable p is replaced by —p.
The vertical normal stress o,. can be obtained by substituting the results derived above into equation (12.42), using the further elaborations

of 71 and 7. This gives
UZZ

=M€ +1) = (€= 1) +ha(§ +1) = ha(§ = 1) + hs(§ +1) — hs(§ — 1), (12.70)

00

where oy is a reference stress defined as

og = L (12.71)

a

and where the functions hq (&), h2(€) and hs(§) are defined in equations (12.56), (12.64) and (12.67).

Computer program

The vertical normal stress 0., can be calculated by the function StripPulseSzz shown below. This function uses the functions delta, hi, h2,
and h3, which are also shown. The delta function is approximated by a parabolic arc of small width and of unit area.
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double delta(double t,double z,double e)
{
double f;if ((t<z-e)||(t>z+e)) f=0;else f=3*(exe-(t-z)*(t-z))/(4*exex*e) ;return(f);
}
double hi(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;complex a,b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;eps=0.01;tt=t*t; XX=X*X;22=2%2; TT=XX+2Z;
tr=tt-nn*rr;tz=tt-nn*zz;if (tr<=0) s=0;else
{
a=complex (t/tz,nn*x*z/ (tz*sqrt (tr))) ;b=complex (t*x/rr, (z/rr)*sqrt (tr)) ;bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=a*bl*bl;e=blxbl+4*bb*gp*gs;s=imag(d/e) /pi;

if (x<0) s+=delta(t,n*z,eps);return(s);
}
double h2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2%nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;XXx=X*X;22=2*2;rr=xx+zz;tr=tt-rr;
if (tr<=0) s=0;else
{
b=complex (t*x/rr, (z/rr)*sqrt (tr)) ;bb=b*b;bl=1-2*bb;gp=sqrt (nn-bb) ; gs=sqrt (1-bb) ;
d=4%bxgp* (1-bb) ; e=bl*bl+4*bb*gp*gs;s=real(d/e)/(pi*sqrt(tr));
}
return(s);
}
double h3(double x,double z,double t,double nu)
{
double n,nn,rr,rt,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0) ;nn=(1-2%nu) /(2% (1-nu)) ;n=sqrt (nn) ; tt=t*t;xx=x*x;22=2%Z; rr=xx+22;
rt=rr-tt;tq=fabs(n*x)+z*sqrt (1-nn) ;if ((rt<=0) || (t<=tq) || (xx<=nn*rr)) s=0;else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rt);else b=x*t/rr+(z/rr)*sqrt(rt) ;bb=b*b;b2=(1-2*bb)*(1-2*bb) ;
c=4%b* (1-bb) *b2*sqrt (bb-nn) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=-c/ (pi*d*sqrt (rt));
}
return(s);
}
double StripPulseSzz(double x,double z,double t,double nu)
{
double s;
s=h1(x+1,z,t,nu)-h1(x-1,z,t,nu)+h2(x+1,z,t,nu)-h2(x-1,z,t,nu) +h3(x+1,z,t,nu) -h3(x-1,z,t,nu) ;
return(s);

}
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Example

The vertical normal stress o, in the point x = 0, z = a, is shown, as a function of time, in Figure 12.5 for two values of Poisson’s ratio: v =0
and v = 0.45. In the figures the first singularity indicates the arrival of the compression wave under the load, the second singularity indicates

5 H H : : H H H H H 5

0:2/00 0 cst/a cst/a

L B
Figure 12.5: Strip Pulse - Vertical Normal Stress, x/a =0, z/a = 1; v = 0 (left) and v = 0.45 (right).

the arrival of the (negative) compression waves emanating from the end points of the load (which arrive at time ¢t = av/2/c,), and the third
singularity indicates the arrival of the shear waves from these points.

12.1.3 The horizontal normal stress

The next quantity to be evaluated is the horizontal normal stress o,,. It is recalled from equation (12.7) that the Laplace transform of this
quantity is

_ s [ .
Cuz = 5 /_OO{(2,ua2 - )\/cf))Cp exp(—s7pz) + 2paysCs exp(—svs2) } exp(—isax) do, (12.72)
Substitution of the expressions (12.11) and (12.12) for the two constants C,, and C; gives

Oypy =01 + 02, (1273)
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o (207 +1/¢2)(20% — N/ pcy)
_ q [ sin(saa) (2% +1/c3)(20” — N/ pc;, .
o B d 12.74
01 T [m «Q (202 + 1/2)2 — 4,7, exp[—s(vpz + tax)] da, ( )
_ q [ sin(saa) 4025,, |
T S da, 12.75
” & /—oo a (202 +1/2)2 — 4a2y,7, exp[—s(ysz + iax)] do ( )

The first integral, equation (12.74), is very similar to the expression (12.43) obtained when considering the vertical normal stress. Using the
same procedures, with a change of variable and a modification of the integration path, gives, by analogy with equations (12.57) and (12.56),

= LlE+1) - (- 1), (12.76)

where the function h;(€) is defined by the dimensionless form
mie) - o T2 =P e (1-265)(1 - 20° + 26))
==g
TR ) (2 T 4B,

The parameter 3, is a dimensionless complex variable defined by equation (12.53),

Bp = (T€ +iC\/T = n2p?) [ p?, (12.78)

The coeflicient of the last term in equation (12.77) is a consequence of the limiting behaviour of the integrand of equation (12.74) for v — 0,
which determines the contribution of the pole for x < 0.

The second integral, equation (12.75), is just the opposite of the expression in equation (12.44), obtained when considering the vertical
normal stress o,,. It follows that the final expression for the second integral can be written as

FH = np) + (1= 20%)6(r = nO){1 = H(©)}. (12.77)

% = L{ha(§ + 1) — ha(§ = 1)+ ha(§ + 1) — ha(§ — D). (12.79)

The function hs(€) is the opposite of the function given in equation (12.64), i.e.

_ 1 4659 gg H(T - P)
B (e T i v (12:50)

where the dimensionless complex parameter (5 is defined by equation (12.65),

Bs = (1€ +iC\/T2 — p2)/p?, (12.81)
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and the parameters g, and g, are defined by (12.66)

Gp=Vn* =02  gs=1-p (12.82)

The function hs(§) is the opposite of the function given in equation (12.67), i.e.

() LA BD0 —2)*E = (e 7)) H(r 7.)

T (1-282)4 +1682(1 - £2)(63 — 1?) P H( —np), (12.83)

where the dimensionless real parameter 3, is defined by equation (12.68),

By = (&7 — C\/p? — 12)/p?, (12.84)
and the dimensionless parameters 7, and 7, are defined by (12.69),

T =nE+V1=n% 1o =0p. (12.85)

The horizontal normal stress o,, can be obtained by substituting the results derived above into equation (12.73), using the further elaborations
of 71 and @5. This gives

O’LL‘Z)
o hi(§+1) —hi(§—=1)+ha(§+1) —ha(§— 1) + ha(§+ 1) — hs(§ — 1), (12.86)
where oy is a reference stress defined as .
oo = L2, (12.87)
a

and where the functions hq(§), ha(§) and h3(€) are defined in equations (12.77), (12.80) and (12.83). It may be noted that the functions ho ()
and h3(&) are antisymmetric in .

Computer program
The horizontal normal stress o, can be calculated by the function StripPulseSxx shown below.

double delta(double t,double z,double e)

{

double f;if ((t<z-e)l||(t>z+e)) f=0;else f=3*x(exe-(t-z)*(t-z))/(4d*xexexe) ;return(f);
}

double hi(double x,double z,double t,double nu)

{
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double n,nn,rr,pi,s,tt,tr,tz,xx,zz,eps;complex a,b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;eps=0.01;tt=t*t;XX=X*X;22=2%2;TT=XX+22;
tr=tt-nn*rr;tz=tt-nn*zz;if (tr<=0) s=0;else
{
a=complex (t/tz,nn*x*z/ (tz*sqrt (tr))) ;b=complex (t*x/rr, (z/rr)*sqrt (tr)) ;bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=a*bl*(1-2*nn+2*bb) ;e=bl*bl+4*bb*gp*gs;s=imag(d/e) /pi;

if (x<0) s+=(1-2*nn)*delta(t,n*z,eps);return(s);
}
double h2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x%*x;22=2%Z;rr=xx+zz;
tr=tt-rr;if (tr<=0) s=0;else
{
b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=b*b;bl=1-2%bb;gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;
d=4*b*gp* (1-bb) ; e=b1xbl+4*bb*gp*gs;s=-real(d/e)/(pi*sqrt(tr));

return(s);
}
double h3(double x,double z,double t,double nu)
{
double n,nn,rr,rt,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x*x;zZ=2%2;rr=xx+zz;rt=rr-tt;
tq=fabs (n*x)+z*sqrt (1-nn) ;if ((rt<=0) || (t<=tq) || (xx<=nn*rr)) s=0;else
{
if (x>0) b=x*t/rr-(z/rr)*sqrt(rt);else b=x*t/rr+(z/rr)*sqrt(rt) ;bb=b*b;b2=(1-2*bb)*(1-2%bb) ;
c=4xb* (1-bb) ¥*b2*sqrt (bb-nn) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=c/ (pi*d*sqrt(rt));

}
return(s);
}
double StripPulseSxx(double x,double z,double t,double nu)
{
double s;s=h1(x+1,z,t,nu)-hi1(x-1,z,t,nu)+h2(x+1,z,t,nu)-h2(x-1,z,t,nu)+h3(x+1,z,t,nu)-h3(x-1,z,t,nu) ;return(s);
}
Example

The horizontal normal stress o,, in the point x = 0, z = a, is shown, as a function of time, in Figure 12.6, for two values of Poisson’s ratio: v =0
and v = 0.45. In these figures the possible first singularity indicates the arrival of the compression wave under the load (its strength appears
to be zero if v = 0), the second singularity indicates the arrival of the (negative) compression waves emanating from the end points of the load
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Figure 12.6: Strip Pulse - Horizontal Normal Stress, z/a =0, z/a = 1; v = 0 (left) and v = 0.45 (right).

-5

(which arrive at time t = a\/2/c,), and the third singularity indicates the arrival of the shear waves from these points, at time ¢ = av/2/cs.
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12.1.4 The shear stress

The last stress component to be evaluated is the shear stress o,.. It is recalled from equation (12.9) that the Laplace transform of this quantity
is

Tur = —% /OO {2a7,C, exp(—7,52) + (202 + 1/¢2)Cy exp(—vs52)} exp(—isaz) da. (12.88)
—o0
Substitution of the expressions (12.11) and (12.12) for the two constants C, and C; gives
Oyz =01+ 02, (12.89)
where 2iqg [ sin(saa) (202 +1/c2)ay,
T1=-"— @ (aErijap - 102,75 exp[—s(ypz + iaw)] da, (12.90)
5, = 2iq *° sin(saa) (202 +1/c2)ay, expl—s(vsz + iax)] da, (12.91)

) a (@213 -1ty
It may be interesting to note that it is immediately clear from these two expressions that for z = 0 the two integrals cancel, so that the boundary
condition along the upper surface, that the shear stress vanishes, is indeed satisfied. Inspection also shows that in these expressions the point
o = 0 is not a singularity.

Using the same methods as for the other stress components leads to the following expression for the shear stress

O-IZ
oy~ EF D) = m(E =D ha(E 1) = hao(€ = 1) + ha(€+1) = ha(E = 1), (12.92)
where oy is a reference stress defined as

oo = qcs/a, (12.93)
and where the functions hq(€), h2(€) and hs(§) are defined as follows, using the same dimensionless variables as before.

The function hq (&) is

(€)= 2% (n* - B)(1 —287) ﬁQ} H(r —np)

u {(1—2ﬁ3)2+46§\/1—5§\/772— VT2 —n2p?

, (12.94)

where
Bp = (€7 +iC\/T = n2p?) /. (12.95)

The function ho(€) is

_ 2 V1= B2y — B2(1—26?) H(r —p)
h2(§) T *SR{ (1—282)2 +482\/1— B2/n% — 62} S (12.96)
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where
Bs = (&7 +iC\/T2 = p?)/p*. (12.97)
The function hs3(€) is
T w1283t + 1681 - B2)(5 — P) e " |
where
Ba = (67 =V =)/, (12.99)

These expressions have been derived assuming that = > 0. For z < 0 the values can be obtained by noting from the original integrals that the

functions must be symmetric in x. The shear stress itself should be antisymmetric.

Computer program

The shear stress o, can be calculated by the function StripPulsesxz shown below. This function uses the functions h1, h2, and h3, which are

also shown.

double hi(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
xa=fabs(x) ;pi=4*atan(1.0) ;nn=(1-2%nu)/(2*(1-nu)) ;n=sqrt (nn) ; tt=t*t;xx=xa*xXa;22=2%Z; rr=xx+22;
tr=tt-nn*rr;if (tr<=0) s=0;
else
{
b=complex (t*xa/rr, (z/rr)*sqrt (tr)) ;bb=b*b;bl=1-2%bb;gp=sqrt (nn-bb) ; gs=sqrt (1-bb) ;
d=(nn-bb) *b1;e=blxbl+4xbb*gp*gs;s=2*real(d/e)/(pi*sqrt(tr));
}
return(s);
}
double h2(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
xa=fabs (x) ;pi=4*atan(1.0) ;nn=(1-2%nu)/(2*(1-nu)) ;n=sqrt (nn) ; tt=t*t; xx=xa*xa;ZZ=2*Z; rr=xx+22;
tr=tt-rr;if (tr<=0) s=0;
else
{
b=complex (t*xa/rr, (z/rr)*sqrt (tr)) ;bb=b*b;b1=1-2%bb; gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;
d=gp*gs*bl;e=blxbl+4xbb*gp*gs;s=-2xreal(d/e)/(pi*sqrt(tr));

return(s);
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}
double h3(double x,double z,double t,double nu)
{
double xa,n,nn,rr,pi,s,b,bb,tt,xx,zz,rt,tq,b2,c,d;
xa=fabs (x) ;pi=4*atan(1.0) ;nn=(1-2%nu)/(2*(1-nu)) ;n=sqrt (nn) ; tt=t*t;xx=xa*xa;22=2*%2;rr=xx+zz;rt=rr-tt;
tg=fabs (n*x)+z*sqrt(1-nn) ;if ((rt<=0)||(t<=tq) || (xx<=nn*rr)) s=0;
else
{
b=xa*t/rr-(z/rr)*sqrt (rt) ; bb=b*b;b2=(1-2xbb) * (1-2*bb) ;
c=b2* (1-2%bb) *sqrt (bb-nn) *sqrt (1-bb) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=2*c/ (pi*d*sqrt(rt));

}
return(s);
}
double StripPulseSxz(double x,double z,double t,double nu)
{
double s;
s=h1(x+1,z,t,nu)-h1(x-1,z,t,nu)+h2(x+1,z,t,nu)-h2(x-1,z,t,nu)+h3(x+1,z,t,nu)-h3(x-1,z,t,nu) ;
return(s);

}
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Example

The shear stress o,, in the point © = a, z = a, is shown, as a function of time, in Figure 12.7 for two values of Poisson’s ratio: v = 0 and
v = 0.45. In the figures the first singularity indicates the arrival of the compression wave under the load, and the further singularities indicate

5 — T T T T T T 5

0zz/00 0 cst/a 0

cst/a

0 I 1 O O i
Figure 12.7: Strip Pulse - Shear Stress, x/a =0, z/a = 1; v = 0 (left) and v = 0.45 (right).

the arrival of the compression waves and shear waves emanating from the end points of the loaded strip.
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12.2 Strip load on elastic half plane

—O0zz

z

Figure 12.8: Half plane with strip load.

The second problem to be considered in this chapter is the case of a strip
load on an elastic half plane, i.e. a load that is applied at time ¢ = 0, and
then remains constant in time, see Figure 12.8. In this case the boundary
conditions are

z2=0: 0, =0, (12.100)

—qH(t), if|z] <a,
zzO‘crzzz{ ¢H(t) = (12.101)

0, if |z| > a.
The Laplace transform of the last condition is
—q/s, if |z| < a,
z2=0: 7, = / ) i (12.102)
0, if|z]>a.

Compared to the boundary condition in case of a strip pulse, see equation

(12.3), the difference is a division by s. In the time domain this corresponds to integration with respect to time t. The stresses will be evaluated
for this case, starting from the solutions given in the previous section for the strip impulse. In each case the analysis is just an integration over

time.

12.2.1 The isotropic stress

The isotropic stress is, on the basis of a time integration of equation (12.39),

%:(1_772){f(§+17<77-)+Af(£+17<77-)_f(g_1aC7T)_Af(§_1’C7T)}7 (12.103)

where .
:/ h(&, ¢, k) dr, (12.104)

np
Af(E ¢, T) = TAh(g,g,m)dK;. (12.105)

np
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The factor ¢, /a in the reference value of the stress has been omitted, because dt = (¢s/a)dk. In both integrals the lower limit of integration has
been set equal to np, because for £ < np the actual functions contain a factor zero. The two integrals (12.104) and (12.105) will be considered
separately.

The first integral
In the first integral the integrand is, with (12.32),

_ Lg mVR =P +inEC (1-287)
me.cm) = 2 s s T i (12.106)

where (3, is defined in equation (12.29),
Bp = (r€ +iC/T2 = n2p?) /p?, (12.107)

and the parameters g, and g, are defined in equation (12.30),

9p = V1* = B2, gs =1 -2 (12.108)

Because of the complex character of the expression (12.106) a numerical integration seems to be required. For such a numerical integration a
complication is that the expression (12.106) has a singularity at the lower limit, for k = np, of the character 1/4/x2 — n2p2. Although this is an
integrable singularity, the results may be easier to compute, and more accurate, if the function is written as

k(¢ ¢, np)

h(E, ¢, k) = +h*(&,¢,R), 12.109
(& ¢ kK) RTINS (& ¢ k) ( )
e (&, € R) — k(& Cnp)
* _ Gy K) — y Gy TP
h*(&, ¢ k) = RN/ (12.110)
and
1 (ry/K2 = 02p% +in?E0) (1 — 2637)
k(€ ¢ R)==S pe_ 1. (12.111)
T {(1—2ﬂ5)2+4ﬁ£\/1—ﬂ£\/n2—ﬁ5}

A standard integral is

/T : chd” ! avctan (Y% (12.112)
n -n

W= P - -
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where ( < p. The validity of this integral may be verified by differentiating the right hand side with respect to 7.
Substitution of (12.109) into (12.104) gives, using the integral (12.112),

(€, ¢, mp)

TTE, [
f(fv(vT) = W arCtan(W)—i_LP h (gaCN‘{’) d"{v (12113>

where the value of the function h*(,, k) at the lower limit of integration is zero,

h* (€, ¢ mp) = 0. (12.114)

The integral in equation (12.113) can be computed accurately by numerical integration.

The second integral

The integrand of the second integral is, with (12.36)

A€, ¢ k) = 6(T —nO{1 = H(§)}, (12.115)

Substitution into (12.105) gives
Af(&, ¢ 7) = H(r —n¢){1 — H()}- (12.116)

This represents a compression wave just below the load.

Computer program

The isotropic stress can be calculated as a function of £, , 7 and v by the function StripLoadS shown below. The functions k, £ and df, used
by this function, are also shown. The numerical integration is performed using Simspon’s rule.

double k(double x,double z,double w,double nu)
{
double n,nn,rr,pi,s,ww,xx,zz,wr;complex a,b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu) /(2% (1-nu)) ;n=sqrt (nn) ; Ww=w*w ; XX=X*X ; ZZ=Z*Z ; TT=XX+2Z;
wr=ww-nn*rr;if (wr<=0) s=0;
else
{
a=complex (w*sqrt (wr) ,nn*x*z) ;b=complex (w¥x/rr, (z/rr)*sqrt (wr)) ; bb=b*b;bl=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=a*bl;e=bl*bl+4*bb*gp*gs;s=imag(d/e) /pi;

return(s);
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}
double f(double x,double z,double t,double nu)
{
double n,nn,r,rr,xa,xx,zz,rz,tt,b,p,pp,pr,pz,s,sl,s2,s3,h,hh,eps;
h=0.001; eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;
if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt (rr) ;rz=rr-zz;p=n*r+h; pp=p+*p;b=k(xa,z,p,nu) ;
hh=h*h;if (rz<hh) rz=hh;if (tt<=nn*rr) s=0;else
{
s=(b/ (nn*z*sqrt (rz)) ) *atan ((z*sqrt (tt-nn*rr))/(t*sqrt(rz))) ;s1=0;
while (pp<tt)
{
p+=h; pp=p*p; pz=pp-nn*zz; pr=pp-nn*rr;s2=(k(xa,z,p,nu)-b) / (pz*sqrt (pr));
p+=h; pp=p*p; pz=pp-nn*zz;pr=pp-nn*rr;s3=(k(xa,z,p,nu)-b) / (pz*xsqrt (pr) ) ;
s+=(s1+4%s2+s3) *h/3;s1=83;
}
}
return(s);
}
double df(double x,double z,double t,double nu)
{
double s,n,nn;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ;s=1;if ((t<=n#*z)||(x>=0)) s=0;return(s);
}
double StripLoadS(double x,double z,double t,double nu)
{
double s,nn;
nn=(1-2*nu) /(2% (1-nu)) ;
s=(1-nn) *(f (x+1,z,t,nu)+df (x+1,z,t,nu)-f(x-1,z,t,nu)-df (x-1,z,t,nu));
return(s);

}

In these functions special care has been taken to avoid discontinuities or singularities at x=1 and x=-1, by introducing a small parameter eps.
The magnitude of the step in the numerical integration is denoted by h. Accuracy may be further improved by giving this parameter an even
smaller value, at the price of computation time, of course.

Examples

Figure 12.9 shows the isotropic stress as a function of the lateral coordinate x, for v = 0.4 and z/a = 1.0, and for two values of time: cst/a = 2
and cgt/a = 20. In the second figure the elastostatic values, which should obtain for ¢ — oo, are also shown, by small asterisks. These elastostatic
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Figure 12.9: Strip Load - Isotropic Stress, v = 0.4, z/a = 1; ¢st/a = 2 (left) and cst/a = 20 (right).

stresses are, see e.g. Sneddon [1951],

1
7= —f{aurctaun(gzj +
q ™

a) - arctan(x . a)}. (12.117)
The agreement appears to be very good. It might be concluded from the figures that the elastodynamic solution presented here is in agreement
with the elastostatic limit.

This conclusion is a little too fast, however. By taking into account a wider range of values of the lateral coordinate x/a, it appears that
there is a difference between the elastodynamic solution and the elastostatic solution, as is illustrated in Figure 12.10. This figure shows the
isotropic stress for five increasing values of the dimensionless time parameter, namely cst/a = 20,40, 60, 80,100, in a range up to x/a = 100,
with the resolution of the graphs gradually decreasing, in order to distinguish between the various responses. As in the case of the line load,
considered in the previous chapter, it appears that the solution consists of the ultimate elastostatic solution, plus a time dependent effect of a
local disturbance, moving at the speed of the Rayleigh wave. This disturbance travels at constant speed, and with a constant amplitude and
constant shape towards infinity. If time becomes really infinitely large the disturbance vanishes beyond the boundary at infinity, of course, and
this confirms the conclusion that the elastodynamics solution is a proper generalization of the elastostatic solution, after all. But is is important
to realize that the Rayleigh wave disturbance in a two dimensional elastic problem does not exhibit any geometrical damping, and is visible for
all finite values of time, albeit at very large distances for large values of time.

Figure 12.10 has been drawn for the case v = 0 and z/a = 1. For other values of these parameters the Rayleigh wave disturbance also
appears, but at somewhat modified intensity or speed. Actually, in each case the velocity corresponds very well with the theoretical velocity of
the Rayleigh wave, as determined in Chapter 9 of this book.
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Figure 12.10: Strip Load - Isotropic Stress, v =0, z/a = 1.

Approximation for large values of time

The solution given in this section is exact, but so complex that numerical values can be obtained only by a computer program. It would be useful to
have an approximation that would be somewhat easier to handle. Such an
approximation can be obtained by extending the approximate solution for a
line load derived in the previous chapter, see equation (11.244),

U gdu

onz 1 n m
1+22/22 14 (z— ¢ t)?/(wpz)?’

(12.118)

where F' is the magnitude of the line load, ¢, is the speed of the Rayleigh
wave, and m and w,, are given by equations (11.242) and (11.243).

If the load F' is replaced by a distributed load ¢ du at a distance u from
Figure 12.11: Half plane with line load. the origin, see Figure 12.11, the solution for such a distributed load can be
obtained from equation (12.118) through replacing F' by ¢ du, and x by . —u.
This gives

z

qdu mqdu
} o o ' 12.119
cst/z > oTZ 1+ (z —u)?2/22 + 1+ (x —u—cpt)?/(wpz)? ( )




Arnold Verruijt, Soil Dynamics : 12. STRIP LOAD ON ELASTIC HALF SPACE 310

The isotropic stress due to a distributed load ¢(u) can now be obtained by integrating over u. For the case of a strip load this involves integrals
of the following general form

/+a‘h‘— A(z,a, 2) (12.120)
» 1+(u7x)2/22—7rz T,a,%), )

where A(x,a, z) is an elementary function defined by

1 _
x+a)—farctan(x a4
7r

A(z,a,z) = %arctan( ). (12.121)

Using this notation the approximate expression for the isotropic stress caused by a strip load is

cstfa>>1 : 7~ —A(x,a,z) + mw, Az — ¢ty a, wpz). (12.122)
q

This is indeed a much simpler formula, although it must be noted that it is valid only for large values of the time parameter cgst/a. The
approximate formula confirms that for large values of time the solution consists of the elastostatic solution and the Rayleigh wave, where the
shape and the magnitude of the Rayleigh wave disturbance remains unchanged as it travels to infinity.

It may be recalled from the previous chapter that the parameters in the approximate solution are

e (1 ;7]2\)4(;5; N = TR, (12.123)

where 7, 8 and M are defined by

_ 145 +8(1—n?)B°

FaE 1P (12.124)

n:Cs/Cpa 6:05/67"7 M

Figure 12.12 shows two comparisons of the exact analytical solution (in the left half of each figure, in red) and the approximate solution (in
the right half, in green). The first figure is for v = 0 and z/a = 1 and ¢st/a = 10. The maximum error in the approximate solution at that time
is 0.018. For larger values of time the error is further reduced.
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Figure 12.12: Strip Load - Isotropic Stress, ¢st/a = 10; v =0, z/a =1 (left) and v = 0.5, z/a = 0.1.

The second figure shows the results for v = 0.5, z/a = 0.1 and ¢4t/z = 10. In this case the maximum error is 0.026, and again the error becomes
smaller with time.

12.2.2 The vertical normal stress

The vertical normal stress o, for the case of a strip load constant in time can be obtained by integration with respect to time ¢ of the solution
of the strip pulse problem, as given in equation (12.70). This gives

UZZ

=f[E+D) - AE =D+ fo(§+1) = (=D + f3(£+1) = f3(E - 1), (12.125)
where .
fe6n = [ mleCmdn, (12.126)
np
f2(&.¢,7) =/ ha(§, ¢, k) dr, (12.127)
P
f3(€7<77—) = /T h?)(faCa”) d’ia (12128)

Tq
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and where the functions hy(§), ho(€) and h3(§) are defined in equations (12.56), (12.64) and (12.67). Because dx = (c¢s/a) dt the factor cs/a in

the reference stress o in equation (12.58) has been eliminated.
The evaluation of the three integrals will be considered separately.

The first integral
In the first integral the integrand is, with (12.56),

{ ry/K2 — 12p? + inPEC (1-2p32)
(k2 — 2C2)\ /K2 — n2p2 (1= 2062)% + 4829595

By = (k& + i/ K2 — n2p?)/ p?

and the parameters g, and g, are defined by equation (12.54),

=V =08  gs=+V1-0.

h(E.Cr) = b H (k= mp) + 3k —nO){1 = HEO},

where (3, is defined by equation (12.53),

To avoid the difficulties caused by the singularity at the lower limit of integration, for k = np, the function hq (&, (, k) is written as

k1(€7 QWP)
(K/Q_TIQCQ) K:Z _,'72p2

h1(§7 Ca K‘) = H(K‘ - 77:0) + hT(fﬁ C? K’) + 5(’€ - T]C){l - H(ﬁ)}:

where
* _ k1(€7Ca ’{) - k1(£a<7np)
h’l(g?C?K/) - (52 B ,'724_2) \/m)
nd
" MR = Lg { (k\/K? —n?p* + in*€C) (1 — 237)? }
’ m (1 -262)2 +482,/1— B2/ — 21

Substitution of (12.132) into (12.126) gives, using the integral (12.112),

(éénp VT2 —n?p? o

f1(€a<77-) - arctan( ) 777p)+ hl(g,c,li)dlﬂ?+H(T*’I]C){l*H(ﬁ)},
n*Cy/ p? — TV p? = (2 np

where the value of the function hf(,(, k) at the lower limit of integration is zero,

hi(&, ¢, mp) = 0.

The integral in equation (12.135) can be computed numerically.

(12.129)

(12.130)

(12.131)

(12.132)

(12.133)

(12.134)

(12.135)

(12.136)
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The second integral

In the second integral, equation (12.127), the integrand is, with (12.64),

1 429593 H(k—p)
ha(€, ¢ k) = ;éR{ ETAE 1453%95} g (12.137)

where the parameter [, is defined by equation (12.65),

s = (k€ +iCV/R2 = p?) [ p?, (12.138)
and the parameters g, and g, are defined by equation (12.66),
=V =0  gs=V1-p (12.139)

In this case there is again a singularity at the beginning of the integration interval, but this point is now located at x = p. In order to avoid the
numerical difficulties caused by this singularity the function hs(&, ¢, k) is written as

k2(€a C? p)

ha(€, ¢, k) = T_sz(fi—p)JrhS(é,C,n), (12.140)
h
o R3(E,C R) = F2(6:6, ) — kal€, €, p) (12.141)
2 1S - \/m P} .
d
N k2 (€, ¢ )—léﬁ{ 40,(1 = 52) v/ — 52 } (12.142)
2SN g v 4T - - 2 |

Substitution of (12.140) into (12.127) gives

T+ /72— p?

Fa(6,C.7) = kalE,C. p) log >vam+/7maamw, (12.143)

p

where the value of the function h%(,(, k) at the lower limit integration is zero,

By(E,C.p) = 0. (12.144)

The integral in equation (12.143) can be computed numerically.
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The third integral
In the third integral, equation (12.128), the integrand is, with (12.67),

1 48,1 =B - 267V B2 — P H(s—7,) — H(k —
™ (1-262) + 1662(1 — 52)(52 — %) T2 K2

ha(€) = ") H(e — np), (12.145)

where the real parameter g, is defined by equation (12.68),

By = (€5 = CV/p? — K2) /P, (12.146)

and the parameters 7, and 75 are defined by equation (12.69),

T =08+ (V1=12, 15 =p. (12.147)

It may be noted that this third integral gives a non-zero contribution only if £ > 7p. The lower limit of integration is 7, and the upper limit is
Ts, or 7 when this is smaller. The integral can be computed numerically.

Computer program

The vertical normal stress can be calculated as a function of &, {, 7 and v by the function StripLoadSzz shown below. The auxiliary functions
used by this function, in which the three integrals are calculated, are also shown.

double ki1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex a,b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2%nu)/(2*(1-nu)) ;n=sqrt (nn) ; tt=t*t;xx=x*X;22=2%2; rr=xx+zz;
tr=tt-nn*rr;if (tr<=0) s=0;else
{
a=complex (t*sqrt (tr) ,nn*x*z) ;b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=b*b;b1=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=a*bl*bl;e=blxbl+4*bb*gp*gs;s=imag(d/e)/pi;

return(s);

}

double f1(double x,double z,double t,double nu)

{

double n,nn,r,rr,xx,zz,rz,tt,b,p,pp,pr,pz,s,sl,s2,s3,xa,h,hh,eps;

h=0.001; eps=h*h;xa=x;nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt(nn) ;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt (rr) ;hh=h*h;p=n*r+hh;pp=p*p;b=kl(xa,z,p,nu) ;rz=rr-zz;if (rz<hh) rz=hh;



Arnold Verruijt, Soil Dynamics : 12. STRIP LOAD ON ELASTIC HALF SPACE

315

if (tt<=pp) s=0;else
{
s=(b/ (nn*z*sqrt (rz)))*atan((z*sqrt (tt-nn*rr))/(t*sqrt(rz))) ;s1=0;while (pp<tt)
{
p+=h; pp=p*p; pz=pp-nn*zz;pr=pp-nn*rr;s2=(kl(xa,z,p,nu)-b) /(pz*sqrt(pr)) ;
p+=h; pp=p*p; pz=pp-nn*zz; pr=pp-nn*rr;s3=(ki(xa,z,p,nu) -b) /(pz*sqrt (pr)) ;
s+=(s1+4*s2+s3)*h/3;s1=83;
}
}
if ((t>n*z)&&(xa<0)) s+=1;return(s);
}
double k2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x*x;zZ=2%2;rr=xx+zz;tr=tt-rr;if (tr<=0) s=0;else
{
b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=bxb;bl=1-2%bb;gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;
d=4*b* (1-bb) *gp; e=b1*bl+4*bb*gp*gs;s=real(d/e) /pi;
}
return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,sl,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr);tr=t/r;h=0.001;hh=h*h;p=r+hh;pp=p*p;b=k2(xa,z,p,nu);if (tt<=pp) s=0;else
{
s=bxlog(tr+sqrt (tr*tr-1));s1=0;
while (pp<tt)
{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h; pp=p*p; pr=pp-rr;s3=(k2(xa,z,p,nu)-b) /sqrt (pr) ;
s+=(s1+4*s2+s3)*h/3;s1=s3;
}
}
return(s);
}
double k3(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x*x;2z=2%2; rr=xx+zz;tq=n*fabs (x) +z*sqrt (1-nn) ;
if ((tt>=rr) || (t<=tq) | | (xx<=nn#*rr)) s=0;else
{
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if (x>0) b=x*t/rr-(z/rr)*sqrt(rr-tt);else b=x*t/rr+(z/rr)*sqrt(rr-tt) ;bb=b*b;b2=(1-2xbb) * (1-2xbb) ;
c=4xb* (1-bb) *b2*sqrt (bb-nn) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=-c/ (pi*d*sqrt (rr-tt));
}
return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ; XX=X*X ; 2z2=2*2z ; rr=xx+2z2z;r=sqrt (rr) ; ts=r;tq=n*fabs (x) +z*sqrt (1-nn) ;
if ((t<=tq) || (xx<=nn*rr)) s=0;else
{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}
return(s);
}
double StripLoadSzz(double x,double z,double t,double nu)
{
double s;
s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu)+£f2(x+1,z,t,nu)-f2(x-1,z,t,nu) ; +f3(x+1,z,t,nu)-f3(x-1,z,t,nu) ;
return(s);

}

Examples

Figure 12.13 shows the vertical normal stress as a function of the lateral coordinate x, for » = 0 and z/a = 1.0, and for two values of time,
namely ¢st/a = 2 and ¢st/a = 20. In the second figure the elastostatic values, which should obtain for ¢ — oo, are also shown, by small asterisks.
These elastostatic stresses are, see e.g. Sneddon [1951],

UZZ

a)—arctan(x_a)—i— (x+a)z  (x—a)z }

1 T
= ——{arct
{arc an( z z (r+a)2+22 (x—a)®+22

12.148
= (12.148)
The agreement appears to be very good. This has also been found to be the case for other values of v, so that it can be concluded that the
solution is in agreement with the elastostatic solution.

The agreement in the right part of Figure 12.13 may be somewhat misleading, because the range of values of z/a is considerably smaller
than the value of c4t/a, so that an eventual effect at the passing of the shear wave and the Rayleigh wave can not be shown. The behaviour of
the solution for large values of time is studied below.
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Figure 12.13: Strip Load - Vertical Normal Stress, v = 0.0, z/a = 1; ¢st/a = 2 (left) and cst/a = 20 (right).

Approximation for large values of time

An approximation valid for large values of time can be obtained by integrating the approximation for the case of a line load, as given in equation
(11.273). This gives, using the same type of analysis as used in deriving the expression (12.122) for the isotropic stress, and using the notation
A(z,a, z) defined in equation (12.121),

0. 1 (z+a)z 1 (z—a)z
m(x4+a)?2+22 7w(x—a)?+22

%

cstfa>1 — Az, a,2) — 2miwpA(z — ¢ty a, wpz) + 2mow Az — ¢pt, a, wsz), (12.149)

in which

m= G-V AT, (12.150)

4M 2w,

2
My = BAZ”K ws = /1 - 1/52, (12.151)

and the parameters 7, § and M have the same meaning as before.
It may be noted that

N2 4p4 _ _
2miw, — 2maws = (25" —1)" 45 3/]\2&2772/@\/1 /B _ 0, (12.152)
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Figure 12.14: Strip Load - Vertical Normal Stress, z/a =1, ¢st/a = 10; v = 0 (left) and v = 0.5 (right).

because the expression in the numerator is just the Rayleigh function, the zero of which defines the value of 3 = ¢4/c,., see Chapter 9.

To illustrate the accuracy of the approximation (12.149) two examples are shown in Figure 12.14, for z/a = 1 and ¢;t/a = 10, and two values of
Poisson’s ratio: ¥ = 0 and v = 0.5. The figures show the analytical solution in the left half of each figure, in red, and the approximate results in
the left half, in green. The agreement appears to be very good. The maximum error is 0.023, and this error further decreases for larger values
of the time parameter cst/a.

12.2.3 The horizontal normal stress

The horizontal normal stress o, for the case of a strip load constant in time can be obtained by integration with respect to time ¢ of the solution
of the strip pulse problem, as given in equation (12.86). This gives

Cr:v:r

=fil+1) =i =D+ f26+1) = fo( = 1) + f3(§+1) = f(§ — 1), (12.153)

where .
f1(§,¢,7) :/ hi(&, ¢, k) dk, (12.154)

np
f2(57<77—) = / h2(£7<7"€) d’iv (12155)

p
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Ja(6.C.7) / halE. C.) d (12.156)
and where the functions hq(€), h2(€) and hs(§) are defined in equations (12.77), (12.80) and (12.83).
Again the evaluation of the three integrals will be considered separately.
The first integral
In the first integral the integrand is, with (12.77),
ry/R2 —?p% +in*¢¢ (1 —2683)(1 — 20 + 267) 2
K) = H(k —np) + (1 — 202)8(k — nO){1 — H(&)}, 12.157
P(,¢ ) = {W T e T BT b H (k= np) + (1= 20%)0(6 = nQ){1 — H(©)} (12.157)
where (3, is defined by equation (12.78),
Bp = (K€ +iCV/ K2 = 12p?) [ p?, (12.158)
and the parameters g, and g, are defined by
9p = V1* = B2, gs = /1 -2 (12.159)
To avoid the difficulties caused by the singularity at the lower limit of integration, for k = np, the function hq(&, ¢, k) is written as
kl (6) Ca 77:0) 2
hi(€,C k) = T RIE CR) + (1 —202)8(k — nO){1 — H(E)Y, 12.160
where B (E,6m) — ka6, )
RE(E, k) = 88250 F) 7 RIRS: 5 1P) 12.161
{6, = LR (12.161)
and
k(6.0 1) = { (kv/K? —?p? +in*€¢) (1 — 267)(1 — 2n? +2ﬁ2)} (12.162)
’ (1= 282)% + 462/1— B2/n* — 32 ' '
Substitution of (12.160) into (12.154) gives, using the integral (12.112),
k1(&.¢mp) C,np VT —n?p? ’ 2
fig ¢ m) = ~ arctan(>————) H(r —np) + [ (& ¢ k) dr+ (1= 27°)H(m —nC){1 — H()}, (12.163)
n?C\/ p? — TV p? = ¢? np
where the value of the function A} (5 ,(, k) at the lower limit integration is zero,
hi(&;n¢) = 0. (12.164)

The integral in equation (12.163) can be computed numerically.
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The second integral

In the second integral, equation (12.155), the integrand is, with (12.80),

_ 1 452992 H(r —p)
ha(&, ¢ k) = —— %{(1 o) i4ﬁ§gpgs} T (12.165)

where 5 is defined by equation (12.81),

Bs = (€ +iC\/T2 = p?)/p?, (12.166)
and the parameters g, and g, are defined by (12.82),
=V =02, gs=+1-p2 (12.167)

In this case there is again a singularity at the beginning of the integration interval, for k = p. In order to avoid the numerical difficulties caused
by this singularity the function hq(&, ¢, k) is written as

ha(€. o) = ’“j% B3 CR), (12.168)
e o) = F2(ECR) — 1a(E.Cp) o160,
¢ e
and
ka(€,C k) = —im{(l_%g;(i;ﬁg%}. (12.170)
Substitution of (12.168) into (12.155) gives
fa(&¢m) = kz(&@p)log(”‘éﬁ) +/pT h3 (&, ¢, k) dr, (12.171)
where the value of the function h3(€, ¢, %) at the lower limit integration is zero,
h3(&:¢,p) = 0. (12.172)

The integral in equation (12.171) can be computed numerically.
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The third integral
In the third integral, equation (12.156), the integrand is, with (12.83),
ha(€,Com) = = 491~ By) (1 — 26,)°\/ 5 — n? Ak =7g) 2 HR =) g,y (12.173)
T (U= 28  + 1665(1 - 53) (5 — ) g " '
where the real parameter 3, is defined by
By = (6r = CV/p? = K2)/p?, (12.174)
and where 7, and 7, are defined by equations (12.69),
Tg =n&+ V=1 s = p. (12.175)

It may be noted that this third integral gives a non-zero contribution only if £ > 7p. The lower limit of integration is 7, and the upper limit is

Ts, Or 7 when this is smaller. The integral can be computed numerically.

Computer program

The horizontal normal stress can be calculated as a function of ¢, ¢, 7 and v by the function StripLoadSxx shown below. The auxiliary functions

used by this function, in which the three integrals are calculated, are also shown.

double k1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex a,b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2%nu) /(2% (1-nu)) ;n=sqrt (nn) ; tt=t*t;xx=x%*x;22=2%Z; rr=xx+zz;
tr=tt-nn*rr;if (tr<=0) s=0;else
{
a=complex (t*sqrt (tr) ,nn*x*z) ;b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=b*Db;
b1=1-2%bb;gp=sqrt (nn-bb) ; gs=sqrt (1-bb) ;d=a*bix (1+2*bb-2+%nn) ; e=b1*b1l+4*bb*gp*gs;s=imag(d/e) /pi;
}
return(s);
}
double f1(double x,double z,double t,double nu)
{
double m,mm,r,rr,xx,zz,rz,tt,b,p,pp,pr,pz,s,sl,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt (nn) ;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z%z;rr=xx+zz;r=sqrt (rr) ;hh=h*h;p=n*r+hh;pp=p*p;b=kl(xa,z,p,nu) ;rz=rr-zz;if (rz<hh) rz=hh;
if (tt<=pp) s=0;else
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{
s=(b/ (nn*z*sqrt (rz) ) ) *atan((z*sqrt (tt-nn*rr))/(t*sqrt(rz)));s1=0;while (pp<tt)
{
p+=h; pp=p*p; pz=pp-nn*zz; pr=pp-nn#rr;s2=(kl(xa,z,p,nu) -b) / (pz*sqrt (pr));
p+=h; pp=p*p;pz=pp-nn*zz;pr=pp-nn*rr;s3=(k1l(xa,z,p,nu)-b) /(pz*sqrt(pr)) ;
s+=(s1+4%s2+s3)*h/3;s1=83;
¥
}
if ((t>n*z)&&(xa<0)) s+=1-2%nn;
return(s);
}
double k2(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x*x;zZ=2%2;rr=xx+zz;tr=tt-rr;if (tr<=0) s=0;else
{
b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=bxb;bl=1-2%bb;gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;
d=4*b* (1-bb) *gp; e=b1*bl+4*bb*gp*gs; s=—real(d/e) /pi;
}
return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,sl,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr) ; tr=t/r;hh=h*h;p=r+hh;pp=p*p;b=k2SxxX(xa,z,p,nu);
if (tt<=pp) s=0;else
{
s=b*log(tr+sqrt(tr*tr-1));s1=0;while (pp<tt)
{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h; pp=p*p; pr=pp-rr;s3=(k2(xa,z,p,nu)-b) /sqrt (pr) ;
s+=(s1+4*s2+s3)*h/3;s1=53;
}
}
return(s);
}
double k3(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,b,bb,tt,xx,zz,tq,b2,c,d;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ; tt=t*t;xx=x*x;2z=2%2; rr=xx+zz;tq=n*fabs (x) +z*sqrt (1-nn) ;
if ((tt>=rr) || (t<=tq) | | (xx<=nn#*rr)) s=0;else
{
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if (x>0) b=x*t/rr-(z/rr)*sqrt(rr-tt);else b=x*t/rr+(z/rr)*sqrt(rr-tt) ;bb=b*b;b2=(1-2xbb) * (1-2xbb) ;
c=4%b* (1-bb) *b2*sqrt (bb-nn) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=c/ (pi*d*sqrt (rr-tt));
}
return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ; XX=X*X ; 2z2=2*2z ; rr=xx+2z2z;r=sqrt (rr) ; ts=r;tq=n*fabs (x) +z*sqrt (1-nn) ;
if ((t<=tq) || (xx<=nn*rr)) s=0;else

{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}
return(s);
}
double StripLoadSxx(double x,double t,double nu)
{
double s;
s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu)+£f2(x+1,z,t,nu)-f2(x-1,z,t,nu)+f3(x+1,z,t,nu) -f3(x-1,z,t,nu) ;return(s) ;
}
Examples

Figure 12.15 shows the horizontal normal stress as a function of the lateral coordinate z, for v = 0 and z/a = 1.0, and for two values of time:
cst/a = 2 and ¢st/a = 20. In the second figure the elastostatic values, which should obtain for ¢ — oo, are also shown. These elastostatic stresses
are, see e.g. Sneddon [1951],

Ozx
q

a) — arctan( ) — (12.176)

z (x4+a)?2+22  (x—a)?+ 22

:—%{arctan(x x—a (x+a)z (r—a)z }

The agreement appears to be very good. This has also been found to be the case for other values of v, so that it can be concluded that the
solution is in agreement with the elastostatic solution.

Again, the agreement with the elastostatic solution is so good because the value of time in the right half of Figure 12.15 is large compared
to the distance from the loaded area considered. Actually, the elastostatic limit is approached when the distance traveled by the shear wave is
large compared to the distance from the loaded area. It may be noted that the compression wave travels faster, and the Rayleigh wave travels
only slightly slower than the shear wave, so that the shear wave velocity is indeed a convenient parameter.
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Figure 12.15: Strip Load - Horizontal Normal Stress, v = 0.0, z/a = 1; ¢st/a = 2 (left) and ¢st/a = 20 (right).

Approximation for large values of time

An approximation valid for large values of time can be obtained by integrating the approximation for the case of a line load, as given in equation
(11.287). This gives, using the same type of analysis as used in deriving the expression (12.122) for the isotropic stress, and using the notation
A(z,a, z) defined in equation (12.121),

1 (z+4a)z 1 (z—a)z
. = EE i i pean o Az, a, z) + 2mawpA(z — ¢, a, wpz) — 2maw Az — ¢rt, a, ws2), (12.177)

O—II

cstfa>1

in which

282 —1)(26%2 +1 — 212
= e = TR, 12179

2
g = 5]\2”1’7 ws = /1 1/, (12.179)

and the parameters 7, § and M have the same meaning as before.

To illustrate the accuracy of the approximation (12.177) two examples are shown in Figure 12.16, for v = 0 and c¢st/a = 10, and for two
values of the depth: z/a =1 and z/a = 0.01. The figures show the analytical solution in the left half, in red, and the approximate results in the
right half, in green. The agreement appears to be very good. The maximum error is 0.034, and this error further decreases for larger values of
the time parameter cgt/a.
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Figure 12.16: Strip Load - Horizontal Normal Stress, v = 0, ¢st/a = 10; z/a =1 (left) and z/a = 0.01 (right).

The second figure illustrates that close to the surface the horizontal normal stress below the load is practically equal to that load, which is
a known property of the elastostatic solution. This block wave appears to be reflected in the Rayleigh waves, at a reduced magnitude, and of
opposite sign. These tensile stresses, propagating along the surface of the half plane, may lead to cracks, if the load is sufficiently high compared
to the tensile strength of the material.

The property of the solution that in the case of a compressive strip load large tensile stresses are developed near the free surface, is further
illustrated in Figure 12.17. This figure shows the horizontal stress just below the crest of the Rayleigh wave, for three values of Poisson’s ratio,
as a function of depth. The maximum tensile stress occurs if ¥ = 0, and its magnitude is about 45 % of the magnitude of the compressive load
q. This tensile stress rapidly decreases with depth, with the half-width a of the loaded strip as a scaling factor. In a material with a distinct
tensile strength cracks may appear to a certain depth, and the depth of these cracks is related to the magnitude of the compressive load ¢ and
the tensile strength of the material. Conversely, the tensile strength of the material can be determined from the depth of the cracks and the
magnitude of the load.
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Figure 12.17: Maximum value of 0., in Rayleigh wave.

12.2.4 The shear stress

The shear stress o,, for the case of a strip load constant in time can be obtained by integration with respect to time ¢ of the solution of the

strip pulse problem, as given in equation (12.92). This gives

U;Z =fE+1) = AE-1)+ f2(E+1) = fo(E = 1) + f3(E+1) — f3(£ = 1), (12.180)
where
fi(€,¢,7) =/ hi(§, ¢, k) dr, (12.181)
np
f2(§7<?7-) = /T h2(£7<a"i) dﬁv (12182)

p
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Ja(6.C.7) / ha€.C,w) d, (12183)
and where the functions hj(§), h2(€) and hg(§) are defined in equations (12.94), (12.96) and (12.98).
The evaluation of the three integrals will be considered separately.
The first integral
In the first integral the integrand is, with (12.94),
2 _ 32 1—-2 2 H _
hl(f»(;/‘&):*%{ (r” = 5,)(1 — 25) } (v —np) (12.184)
(=282 + 403/ 1= BN/ — ) v/ — i
where
o2 22
g, = SR e (12.185)
p
To avoid the difficulties caused by the singularity at the lower limit of integration, for kK = np, the function hq (€, ¢, k) is written as
V HQ n?p?
where now L L
h,{(§7<)l€) _ 1(57()’22__ 7]12(;47770)7 (12187)
e < i 2ﬁ2)
2 7] - 1-—
ki€, (k)= —R H(k —np). 12.188
Substitution of (12.186) into (12.181) gives, using a standard 1ntegral7
T4+ /T2 =22 T
Fl6.6m) = ka6, Complog( YT e = )+ [ i€ Go)d (12.189)
np
where the value of the function hj(§,(, k) at the lower limit integration is zero,
Bi(E ¢ np) = 0. (12.190)

The integral in equation (12.189) can be computed numerically.
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The second integral
In the second integral, equation (12.182), the integrand is, with (12.96),

g%{ V1= B2\/n? — B2(1—252) }H(Fé—p) (12.191)
7 (1= 2822 + 4521 - BB/ — ) et — o2 |

h2(€7 C? /i) = -

where

g, = o7 icp”z'# ey (12.192)

In this case there is again a singularity at the beginning of the integration interval, but this point is now located at k = p. In order to avoid the
numerical difficulties caused by this singularity the function hs(&, ¢, ) is written as

(6 ¢ p)
where
h5(&, ¢, ) = kz(f’c’ﬂ%z__k;§’c’p)7 (12.194)
and
B _z /1= 32/n? — B%( 202)
ko(€,C k) = Wé)%{(l_%z +4ﬁ2\/ﬁ\/762} —p). (12.195)
Substitution of (12.193) into (12.182) gives
2 _ 2 T
b@gﬂ:mg@mmali{}JMHw—m+/i@@gmw, (12.196)
P
where the value of the function h%(,(, k) at the lower limit integration is zero,
h5(€,¢,p) = 0. (12.197)

The integral in equation (12.196) can be computed numerically.
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The third integral
In the third integral, equation (12.183), the integrand is, with (12.98),

2 (1=262°\/B2 —n*\/1- 52  H(k—1,)— H(k—Ts)
S (1—262)% + 16841 — £2)(82 — 1?) 72— K2

h3(§) H(§ —np), (12.198)

where
By = (€6 = CV/p? — K2) [ p*. (12.199)

and where 7, and 7, are defined by equations (12.69),

T =€+ (V102 75 = p. (12.200)

It may be noted that this third integral gives a non-zero contribution only if £ > 7p. The lower limit of integration is 7, and the upper limit is
Ts, or 7 when this is smaller. The integral can be computed numerically.

Computer program

The shear stress can be calculated as a function of £, {, 7 and v by the function StripLoadSxz shown below. The auxiliary functions used by
this function, in which the three integrals are calculated, are also shown.

double ki1(double x,double z,double t,double nu)
{
double n,nn,rr,pi,s,tt,tr,xx,zz;complex b,bb,bl,gp,gs,d,e;
pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt (nn) ; tt=t*t; XXx=X*X;2z=2*2; rr=xx+zz;tr=tt-nn*rr;
if (tr<=0) s=0;else
{
b=complex (t*x/rr, (z/rr)*sqrt(tr)) ;bb=bxb;bl=1-2%bb;gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;
d=b1*(nn-bb) ;e=bl*bl+4xbb*gp*gs;s=2*real(d/e)/pi;
}
return(s);
}
double f1(double x,double z,double t,double nu)
{
double n,nn,r,rr,xx,zz,tt,tr,b,p,pp,pr,s,s1,s2,s3,xa,h,hh,eps;
h=0.001; eps=h*h;xa=x;nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt(nn) ;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;xx=xa*xa;zz=z*z;rr=xx+zz;r=sqrt (rr) ; tr=t/(n*r) ;hh=h*h;p=n*r+hh;pp=p*p;b=kl(xa,z,p,nu);
if (tt<=pp) s=0;else
{
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s=b*log(tr+sqrt(tr*tr-1));s1=0;while (pp<tt)
{
p+=h;pp=p*p; pr=pp-nn*rr;s2=(k1(xa,z,p,nu)-b) /sqrt(pr) ;
p+=h; pp=p*p; pr=pp-nn*rr;s3=(ki(xa,z,p,nu)-b) /sqrt (pr);
s+=(s1+4*s2+s3)*h/3;s1=83;
}
}
return(s);
}
double k2(double x,double z,double t,double nu)
{

double n,nn,rr,pi,s,tt,tr,xa,xx,zz;complex b,bb,bl,gp,gs,d,e;

pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;xa=fabs(x) ; tt=t*t;xx=xa*xa;zz=2*2z; rr=xx+zz;

tr=tt-rr;if (tr<=0) s=0;else
{
b=complex(t*xa/rr, (z/rr)*sqrt(tr)) ;bb=b*b;b1=1-2%bb;
gp=sqrt (nn-bb) ;gs=sqrt (1-bb) ;d=gp*gs*bl;e=bl*bl+4d*bb*gp*gs;s=-2*real(d/e)/pi;

return(s);
}
double f2(double x,double z,double t,double nu)
{
double r,rr,tt,tr,b,p,pp,pr,s,sl,s2,s3,xa,h,hh,eps;
h=0.001;eps=h*h;xa=x;if (fabs(xa)<eps) {if (x>=0) xa=eps;else xa=-eps;}
tt=t*t;rr=xa*xa+z*z;r=sqrt(rr);tr=t/r;hh=h*h;p=r+hh;pp=p*p;b=k2(xa,z,p,nu);
if (tt<=pp) s=0;else
{
s=bxlog(tr+sqrt (tr*tr-1));s1=0;
while (pp<tt)

{
p+=h;pp=p*p;pr=pp-rr;s2=(k2(xa,z,p,nu)-b)/sqrt(pr);
p+=h; pp=p*p; pr=pp-rr;s3=(k2(xa,z,p,nu)-b) /sqrt (pr) ;
s+=(s1+4*s2+s3)*h/3;s1=s3;

}

}
return(s);
}
double k3(double x,double z,double t,double nu)
{

double n,nn,rr,pi,s,b,bb,tt,xa,xx,zz,tq,b2,c,e;

pi=4*atan(1.0) ;nn=(1-2*nu)/(2*(1-nu)) ;n=sqrt(nn) ;xa=fabs(x) ; tt=t*t;xx=xa*xa;2zz=2*2; rr=xx+zz;

tg=n*fabs(x)+z*sqrt(1-nn) ;if ((tt>=rr)||(t<=tq) || (xx<=nn*rr)) s=0;else
{
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b=xa*t/rr-(z/rr)*sqrt (rr-tt) ; bb=b*b;b2=(1-2%bb) * (1-2*bb) ;
c=(1-2*bb) *xb2*sqrt (1-bb) *sqrt (bb-nn) ; d=b2*b2+16*bb*bb* (1-bb) * (bb-nn) ; s=2*c/ (pi*d*sqrt (rr-tt));
}
return(s);
}
double f3(double x,double z,double t,double nu)
{
int m;double n,nn,xx,zz,r,rr,p,s,h,ts,tq;
nn=(1-2*nu) /(2% (1-nu) ) ;n=sqrt (nn) ; XX=X*X ; 2z2=2*2z ; rr=xx+2z2z;r=sqrt (rr) ; ts=r;tq=n*fabs (x) +z*sqrt (1-nn) ;
if ((t<=tq) || (xx<=nn*rr)) s=0;else

{
if (t<ts) ts=t;m=10000;h=(ts-tq)/m;s=0;p=tq+h/2;while (p<ts) {s+=k3(x,z,p,nu)*h;p+=h;}
}

return(s);

}

double StripLoadSxz(double x,double z,double t,double nu)

{

double s;

s=f1(x+1,z,t,nu)-f1(x-1,z,t,nu)+f2(x+1,z,t,nu)-f2(x-1,z,t,nu)+f3(x+1,z,t,nu)-£3(x-1,z,t,nu) ;
if (x<0) s*=-1;return(s);

}

Examples

Figure 12.18 shows the shear stress as a function of the lateral coordinate z, for v = 0 and z/a = 1.0, and for two values of time: ¢st/a = 2 and
cst/a = 20. In the right half of the figure the elastostatic values, which should obtain for ¢ — oo, are also shown. For z > 0 these elastostatic
stresses are, see e.g. Sneddon [1951],

2 2

z - : } (12.201)

Ozz 1
q ﬁ{(m—&—a)z—i—z? (x —a)?+ 22

The agreement appears to be very good. This has also been found to be the case for other values of v, so that it can be concluded that the
solution is in agreement with the elastostatic solution.

As before, the agreement with the elastostatic solution is so good because the value of time in the right half of Figure 12.18 is large compared
to the distance from the loaded area considered. The actual criterion for the elastostatic limit to be approached is that the distance traveled by
the shear wave should be large compared to the distance from the loaded area. As mentioned before, the distance traveled by the shear wave is
a convenient criterion, because the compression wave travels faster and the Rayleigh wave travels only slightly slower than the shear wave.
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Figure 12.18: Strip Load - Shear Stress, v = 0.0, z/a = 1; cst/a = 2 (left) and c¢st/a = 20 (right).

Approximation for large values of time

An approximation valid for large values of time can be obtained by integrating the approximation for the case of a line load, as given in equation
(11.312). This gives, using the same type of analysis as used in deriving the expression (12.122) for the isotropic stress, and using the notation
A(z,a, z) defined in equation (12.121),

a1 ngwl 22 l 22
Est/a g m(@ta®+z? w(z—a)?+ 22
(z — crt + a)? + (wpz)? (z —crt +a)® + (w,2)?
| o 12.202
Tt 08 et — a)? + (wy2)? s O = ) + (wy2)? ( |
in which
232 — 1 2732
mo= 221 T (12.203)
232 —1
mg = (%]\Ji)wp’ ws =/1-1/2, (12.204)
Ws

and the parameters 7, # and M have the same meaning as before.
It may be noted that msw, = mews, so that the two coefficients of the logarithms in equation (12.202) are equal.
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Figure 12.19: Strip Load - Shear Stress, z/a =1, c¢st/a = 10; v = 0 (left) and v = 0.5 (right).

To illustrate the accuracy of the approximation (12.202) two examples are shown in Figure 12.19, for z/a = 1 and ¢st/a = 10, and for two
values of Poisson’s ratio: v = 0 and v = 0.5. The figures show the analytical solution in their left half, in red, and the approximate results
in their right half, in green. The agreement appears to be very good. The maximum error is 0.015, and this error further decreases for larger
values of the time parameter cyt/a.

Conclusion

In this chapter the solutions of the problems of a strip pulse and a strip load on an elastic half space have been considered. Applying De Hoop’s
solution method, closed form expressions for the stress components in the half space for the case of a strip pulse have been derived, using a
procedure proposed by Stam (1990). The solutions for the case of a strip load, constant in time, have been derived using a numerical integration
over time.

The solutions have been validated by verifying that they are proper generalizations of the elastostatic problem, and of the line load problems
considered in the previous chapter. They are also in good agreement with results obtained using a numerical (finite element) method (Verruijt
et al., 2008).

Special attention has been given to the generation of Rayleigh waves in the vicinity of the surface. In general, for large values of time the
solutions appear to consist of the elastostatic stress distribution plus a constant Rayleigh wave disturbance near the surface. Simple analytical
expressions for the stresses, valid for large values of time, say cst/a > 10, have been derived, see also Verruijt (2008).
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An interesting result obtained in ths chapter is that the Rayleigh waves result in tensile horizontal stresses propagating along the surface, in
case of a compressive strip load. The magnitude of the tensile stresses may be as large as about half the magnitude of the load.
Problems

12.1 Verify that the approximate solutions given in this chapter for o, 0., and o,,, see equations (12.122), (12.149) and (12.177), satisfy the
relation o = (0., + 042)/2.

12.2  Verify that these approximate solutions reduce to the approximate solutions given in the previous chapter for a constant line load if the
width of the strip a — 0, using the expression F' = 2aq for the total load.

12.3 Consider the values of the approximate solution for the vertical normal stress, equation (12.177), for —a < x — ¢,t < a, that is in the
vicinity of the passage of the Rayleigh wave. Using equation (12.152) show that this stress is zero for z — 0, as required by the boundary condition.

12.4 Similarly, show that the approximate solution for the shear stress, equation (12.202), satisfies the condition that for z — 0 this stress is
zero, as required by the boundary condition.



Chapter 13

POINT LOAD ON ELASTIC HALF SPACE

This chapter presents a solution by Pekeris (1955) of the problem of a point load on the surface of an elastic half space. The derivation follows
the presentation of the solution in the original paper by Pekeris, but some notations have been modified, and a numerical technique is used to
evaluate certain integrals. This enables to generalize the solution by Pekeris for other values of Poisson’s ratio than v = %. The solution for
other values of v was given in closed form by Mooney (1974), and the solution has been further analyzed and discussed by Eringen & Suhubi

(1975) and by Foinquinos & Roésset (2000).

13.1 Problem

13.1.1 Basic equations

The problem considered in this chapter is a point load on the surface of an elastic half space, applied at time ¢t = 0, see Figure 13.1. The basic

Figure 13.1: Point load on half space.

differential equations are the equations of motion in the radial and vertical directions r and z, for a linear elastic material, characterized by the
Lamé constants A and u. These equations are, when expressed in terms of the displacement components u and w in radial and vertical direction,
respectively,

de Pu  10u wu 82U) 0%u

ot e et o (13.1)

335
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Oe Pw 10w 0w 0w
- Z ) =p 13.2
Oy ta(Ge gt o) =0 g (13.2)
where e is the volume strain,
ou u Ow
_ u . 13.
¢ or + r + 0z (13-3)

The boundary conditions are supposed to describe a vertical point load on a small circular area, applied at time ¢ = 0, with the shear stress
being zero all along the boundary z = 0 for all values of time,

z2=0 : 0, =0, (13.4)
—% ift>0andr <e,
2=0: 0,, = e (13.5)
0 ift<Oorr>e
Here P is the magnitude of the point load and ¢ is the small radius of the loaded area, which tends towards zero.
The Laplace transforms of the displacements are defined by
u = / u exp(—st) dt, (13.6)
0
(oo}
w= / w exp(—st) dt. (13.7)
0

Using some elementary properties of the Laplace transform (Churchill; 1972) the basic equations now become, assuming that at time ¢t = 0 all
displacements and velocities are zero,

Oe u 1ou u 0% o

Ot (G * s g~ tgm) —po (138)
de Pw 10w Pw 5

O+m g +u(Ga +y g+ gz) = 5T (13.9)

The axial symmetry of the problem suggests to seek the solution in the form of Hankel integrals (Titchmarsh, 1948; Sneddon, 1951). For this
purpose the following Hankel transforms are introduced

U= /Ooour J1(&r)dr, (13.10)

W= /Oooero(gr) dr, (13.11)
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with the inverse transforms

= /Ooﬁgjl(rg) de, (13.12)
0

W= /mWé Jo(r€) d¢. (13.13)
0

The use of the Bessel functions J;(¢7) and Jo(&r) in the transforms (13.10) and (13.11) has been suggested by the nature of the radial operators
in equations (13.8) and (13.9), see Sneddon (1951).

Multiplication of equation (13.8) by rJ;(£r), and integration over the interval from r = 0 to r = oo gives, using a transformation of the
integrals by partial integration, following the usual Hankel transform methods (Sneddon, 1951),

2T aw

nz — s+ A+ 20T = (A + p)g —— = 0. (13.14)

Similarly, multiplication of equation (13.9) by rJy(£7), and integration over the interval from r = 0 to r = co gives

d*W dU

(A +2p) 5 = [p82+,u§2]W+()\+u)§$ =0. (13.15)

The form of these differential equations can be somewhat simplified by the introduction of the following parameters,

cs =\ 11/ p, (13.16)
k=s/cs, (13.17)

1-2 .
P —— (13.18)

:)\+2u:2(1—y) Cp

The quantity c, is the propagation velocity of shear waves, ¢, is the propagation velocity of compression waves, k is a simple scale transformation
of the Laplace transform parameter, and 7 is an auxiliary elastic parameter, completely defined by the value of Poisson’s ratio v. Using these
parameters the basic equations can be written as

d*U — aw
2OV 212 NTT (1 2\ &Y
" RO U= (A=)~ =0, (13.19)
d>W — dU
Tz &)W (L -n*)—= =0, (13.20)



Arnold Verruijt, Soil Dynamics : 13. POINT LOAD ON ELASTIC HALF SPACE 338

13.2 Solution

The general solution of the equations (13.19) and (13.20) for the half space z > 0 is

U = Aaexp(—az) + B¢ exp(—32), (13.21)
W = A€ exp(—az) + BB exp(—fz), (13.22)
in which
a? =€ +k2, (13.23)
52 =& +nk (13.24)

The validity of this solution can easily be verified by substitution into the equations (13.19) and (13.20). The solutions that increase exponentially
for z — oo have been excluded because of the conditions at infinity.
Inverse tranformation of the two equations (13.21) and (13.22) now gives

u = /Ooo[Aa exp(—az) + B exp(—pFz)] & J1(r€) d¢, (13.25)

w= /Ooo[Af exp(—az) + BB exp(—0z)] & Jo(r€) dE. (13.26)

The boundary conditions are formulated in terms of the stresses o,., and o,,. Their Laplace transforms can be related to those of the displacements
by the equations

ou Ow
Trp = 1 (842” i %) (13.27)
With (13.25) and (13.26) this gives, using the definitions (13.23) and (13.24),
Gro = —1i / OO[A(kQ + 26%) exp(—az) + 2B exp(—f2)] £ J1 (r€) dE, (13.29)
0
7o =~ [ Aagexp(-a2) + B +26%) expl(~02)] € Jo(rE) de. (13.30)
0

The coefficients A and B, which may depend upon the parameters s and &, may be determined from the boundary conditions.
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The Laplace transforms of the boundary conditions (13.4) and (13.5) are
z=0 : 7, =0, (13.31)
- — PQ if r <,
z2=0: 0, = TETS (13.32)

0 if r>e.

Using a well known Hankel integral representation, see for instance Erdélyi et al. (1954), formula (8.3.18), the boundary condition (13.32) can

also be written as

> P
z=0 : EZZ:—/O %fJo(Tf)dfa

where the parameter € has been taken infinitely small, so that the load is a point load.

(13.33)

Substituting the general expressions (13.29) and (13.30) into these two boundary conditions leads to the following equations for the deter-

mination of the coefficients A and B,
A(K* +2€%) + 2BB¢ = 0,

P
2mus’

2Aaé + B(k? +2¢2) =

Solution of these equations gives

P 26¢
T 2mps (K2 4 262)2 — 4aBE?’

P k? 4 2€
© 2mps (k2 4 262)2 — 4afBE2”

The final expressions for the Laplace transforms of the displacements are

P * 203 exp(—az) — (k* + 2£2) exp(—32)
2mps o (k? +262)2 — da3€>

S|

52 Jl (7"5) d£7

P 22 exp(—az) — (k? + 262) exp(—f2)
2mps Jo (k2 +2€2)% — da3e?

ﬁg Jo(’/‘g) dga

g|
I

(13.34)

(13.35)

(13.36)

(13.37)

(13.38)

(13.39)

The remaining mathematical problem is to evaluate the integrals in these expressions, and then to perform the inverse Laplace transform. This

is a formidable task. In this paper only the vertical displacements of the surface will be determined.
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13.2.1 Vertical displacement of the surface

At the surface z = 0 of the half space the vertical displacement (13.39) is

2 poo
Wy = 2]73:;5 /0 0 2525)5 T Jo(r€) dE. (13.40)
This equation can be somewhat simplified by introducing the following (dimensionless) parameters,
x=¢/k, (13.41)
a=af/k, (13.42)
b=p/k. (13.43)
Noting that k/s = 1/cs, see eq. (13.17), equation (13.40) can now be written as
Ty = 2;; - /O o 2x2l))§— s Jolkra) do. (13.44)
In this expression the parameters a and b are defined by
a® = 2% +1, (13.45)
b = 2%+’ (13.46)

The integral representation (13.44) can not easily be expressed into elementary functions. Furthermore, the inverse Laplace transform has to
be performed. Pekeris (1955) has indicated that a closed form solution can be obtained by first transforming the integration path in equation
(13.44), then performing the inverse Laplace transform, and finally elaborating the remaining integrals. This procedure will be described in
some detail below.

13.2.2 The Pekeris procedure

To modify the integration path the variable x in the solution (13.44) is considered to be the real part of a complex variable z = x + iy. The
Bateman-Pekeris theorem (see Appendix C) can now be used,

e 2

x f(z) Jo(pz) dax = -

; S /OOO y f(iy) Ko(py) dy, (13.47)

which is valid if the function f(z) has no singularities for R(z) > 0, S(f(z)) = 0 for I(z) = 0, and if the function 2%/2 f(z) tends towards zero
for z — oo. The parameter p must be positive, p > 0.
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In the case of the integral (13.44) the parameter p = kr = sr/cs, which indeed is always positive. Furthermore in this case the function f(z)
is

b
_ 13.48
1(z) (14 222)2 — 4abz?’ ( )
in which, by analytic continuation, the parameters a and b now are defined as
a’ =22 +1, (13.49)
b =22 4+ n?, (13.50)
The function f(z) has singularities on the imaginary axis in the form of branch points, at z = £¢ and z = £ ni. It follows from (13.18) that n
Y
L
i
Nt
x
—1
L

Figure 13.2: The complex z-plane.

varies between 1 = 1/v/2 (for v = 0) and n = 0 (for v = %) By assuming appropriate branch cuts in the complex z-plane the function f(z) can
be made single-valued in the entire plane, see Figure 13.2. It is assumed that the arguments of the parameters a and b are chosen such that for
z — 00 they coincide with the argument of z. At infinity the function f(z), as defined by equation (13.48) behaves as z~2 so that the condition
that z3/2f(z) — 0 for z — oo is certainly satisfied.

The function f(z) may also have poles in the complex z-plane. The location of these poles can be investigated by considering the values for
which the denominator is zero. For this purpose a new variable ¢ is introduced, defined as ¢ = 2%, The denominator of f(z) will be zero if

(1+2¢)* = 4ab(, (13.51)



Arnold Verruijt, Soil Dynamics : 13. POINT LOAD ON ELASTIC HALF SPACE

or, after squaring both sides,

(1+2¢)* = 16(¢ + 1)(¢ +n*)¢%

This leads to an algebraic equation of the third degree in (,

The zeroes are shown, for various values of Poisson’s ratio v in Table 13.2.2. Only the zeroes ( = (3 correspond to poles of the function f(z) in

16(1 — )3 +8(3 — 2012 +8¢C+1=0.

v C1 (o (3
0.00 —0.500000 —0.190983 —1.309017
0.05 —0.473680 —0.195773 —1.280547
0.10 —0.444357 —0.201942 —1.253701
0.15 —0.411138 —0.210361 —1.228500
0.20 —0.371900 —0.223155 —1.204945
0.25 —0.316987 —0.250000 —1.183013

0.30 | —0.268668 + 0.055458¢ | —0.268668 — 0.0554587 | —1.162663
0.35 | —0.253081 4 0.0835637 | —0.253081 — 0.0835637 | —1.143838
0.40 | —0.236767 4 0.1025737 | —0.236767 — 0.1025737 | —1.126466
0.45 | —0.219768 4- 0.116675¢ | —0.219768 — 0.1166757 | —1.110464
0.50 | —0.202128 4- 0.1272137 | —0.202128 — 0.127213¢ | —1.095744

Table 13.1: Zeroes of denominator

the area shown in Figure 13.2, the other singularities are located in other blades of the multivalued function. The negative values of (3 indicate
that the poles are located along the imaginary axis in the z-plane. They are indicated in Figure 13.2 by dots.
It can be concluded that the Bateman-Pekeris theorem can indeed be applied, so that equation (13.44) can be transformed into

Wo = —

=S [ st Koty dy (13.54)
where the path of integration should pass the singularities on the imaginary axis on the right side, see Figure 13.3.
The vertical displacement itself can be obtained from its Laplace transform by application of the complex inversion integral (Churchill, 1972),

1 Y+ico
wp / wo exp(st) ds, (13.55)
v

218 Sy oo
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Y

Figure 13.3: Integration path.

where ~ should be large enough to ensure that there are no singularities to the right of the integration path. Substitution of (13.54) into (13.55)
gives, after interchanging the orders of integration,

wy = — P %/Oooyf(zy){jr /;HOO Ko(sry/c) exp(st) ds} dy. (13.56)

7T2MCS —100
The inverse Laplace transform between brackets can be found in standard tables, see for instance Erdélyi et al. (1954), formula (5.15.8),

1 [rtic 0, t<ry/cs,
— Ko(sry/c)ds = (13.57)

210 Sy —ico (t2 —r2y%/c2)" 2t > ry/e,.
It follows that the integrand of the integral (13.56) will contain a factor zero if y > ¢st/r. Hence this integral reduces to

P [ yfy) P [Ty fy)

_ S — I gy =— ) _ IS
mpues — Jo V2 —r2y2/c2 m2ur  Jo V2 r? — 2

In order to further evaluate this integral the behaviour of the function f(iy) along the various parts of the path of integration must be considered.

For this purpose it is most convenient to consider the parts between the branch points separately.
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The general definition of the function f(z) is, see equation (13.48),

b

1) = (1+222)2 — 4abz?’ (13:59)

where the parameters a and b are defined by
a>=22+1=(2—14)(z+1i), (13.60)
V=22 0% = (2 —in)(z +in), (13.61)

and the arguments of a and b coincide with that of z at infinity. For z = iy the function f(z) becomes

b

fliy) = 0972 + daby?’ (13.62)

where the values of ¢ and b depend upon the location of the point y on the imaginary axis. In particular
O<y<n :a=+1-—9y2 b=+n?—19y2 (13.63)

n<y<1l :a=+1-192 b=1i\y?—n?, (13.64)
l<y<oo :a=ivy2—1, b=1i/y? —n2 (13.65)

It follows from (13.63) that for 0 < y < 7 the function f(iy) will be real. This means that any integration along the interval 0 < y < n will give
no contribution to the imaginary part of the integral in equation (13.58). Now, if the time parameter is so small that cst/r < 7 it follows that
there will be no contribution at all to the integral, and it can be concluded that then the displacement is zero,

cst/r <m i we =0. (13.66)
Because 7 is the ratio of the shear wave velocity and the compression wave velocity, see equation (13.18), this can also be written as
cpt/r <1 @ wo=0. (13.67)

This result expresses that the displacements are zero until the arrival of the compression wave.
Next consider the behaviour of the integral (13.58) if n < ¢st/r < 1. Then there will be only contributions to the integral from the range
1 < y < cst/r, where the largest possible value of ¢st/r is 1. In that range the function f(iy) is, if we write 7 = c,t/r,

<y<rt : fliy) Wy (13.68)
T fliy) = , .
L ’ (1=2y2)% + 4iy?*\/1 — y?*\/y? — n?
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For the evaluation of the integral only the imaginary part is relevant,

) /2 —n2(1 =2 2)2
meysT S = 2y2)4y+ 167;/4((1 - y%))(y2 — %)’ (13.69)

or, after some elaboration,

, VY2 —n?(1—2y%)?
. Cx —
n<y<t : $f(iy) 1857 7 803 — 2257 — 16(1 = 7)o" (13.70)

The integral (13.58) now becomes

P /T yvy? —n*(1 - 2y°)?
m2ur Sy (1= 8y +8(3 — 202yt — 16(1 — 12)y°l\/7% — y?

n<T<1l: wy=-— dy, (13.71)

where, as before,
T = cst/r. (13.72)

This part of the solution can also be written as

n<1t<1l:wy=-— Gi(v, 1), (13.73)

where now
aon= [ W
v (1= 892 +8(3 = 202)y" —16(1 — 2)y)/72 = 42
The values of the integral G;(v,7), in the range n < 7 < 1, can be determined by a numerical integration procedure. The integral has been
evaluated in closed form by Pekeris (1955) for the case that v = i, ie. n?= % For arbitrary values of v a closed form solution has been given
by Mooney (1974).
For values of the dimensionless time variable 7 > 1 there will also be a contribution to the integral (13.58) from the interval 1 < y < 7.
Actually, for large enough values of 7 there might also be a contribution to the integral from the small semi-circle around the pole, see Figure 13.3,
but it can be shown that this leads to a completely real value, so that its imaginary part is zero. On the interval 1 < y < 7 the function f(iy)

is, with (13.65),
‘2 — 2
fliy) = WY : (13.75)
(1=2y%)% = dy>/y? — 1\/y? —

iV~ P (- 2°) + 4iP (0 — PP~ 1 (13.76)
[1— 8y2 +8(3 — 22)y* — 16(1 — )] \/y? — n?

dy. (13.74)

l<y<Tt

which can also be written as

l<y<7t @ fliy) =
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This is purely imaginary.
The displacement of the surface now can be written as
S 1t wp= ——{Gy(,7) + o)}, (13.77)
4 w2 ur
where the function G1(v, 1) is the same as before, see equation (13.74), and the function G5(v, 7) is defined by
T 4 30,2 _ 2 2 _ 1
Ga(v, 1) :/ vy = VY dy. (13.78)
1 [1 =8y +8(3 = 29%)y* — 16(1 — n?)yS]y/7% — y?
13.2.3 Numerical evaluation of the integrals
The first integral
The first integral to be evaluated is Gy (v, 7), see (13.74),
’ yvy? —n*(1 = 2y%)?
Gi(v,T) = / dy. 13.79
7 v (L 8% 80— 22yt — 1601 — 2o/ g )
The integral can be somewhat simplified, and the singularity at y = 7 can be removed, by the substitution
y> =1’ + (2 — n?)sin® ), (13.80)
so that
ydy = (12 — n?)sinf cos 0 db, (13.81)
V2 —n2 = /72 —n2sind, (13.82)
and
V12— 42 = /72 — 2 cosd. (13.83)
The integral (13.79) can now be written as
71'/2 1—-2 2\2 o3 29
Gy = (12 —nZ)/ (1= 2y7)"sin 0, (13.84)
0

1—8y? +8(3 — 21?)y* — 16(1 — 7?)y°

where y is defined by (13.80). The integrand of the integral (13.84) has no singularities if 7 < 7 < 1. This means that the value of this integral
can easily be calculated by a standard numerical algorithm. For larger values of 7 the integrand may have a pole, and the integral must be
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calculated as a Cauchy principal value. The contribution of integration along the semi-circle around the pole can be disregarded because this
can be shown to have a zero imaginary part.

The precise value of the location of the pole can be determined by writing y? = p, and assuming that the denominator is zero if p = pr = 1+d,
where d can be supposed to be a small number, because the values of |(3| in Table 13.2.2 are only slightly larger than 1,

p=pr=1+d, (13.85)

The value p = pg is a zero of the term between square brackets in the denominator of the integrand of equation (13.94). It follows that

F(p) =1—8pr +8(3 — 41°)pj, — 16(1 — n*)p, = 0. (13.86)
This gives, with (13.85) and using the definition of 72 in equation (13.18),
dld+1)(d+v)=(1-v)/8, (13.87)
from which it follows that
g U=/8 (13.88)

1+ d)(d+v)

From this equation the value of d can be determined to any desired accuracy by an iterative process, starting with the value d = (1 —v)/8. It can
be concluded that the value of pr, which determines the arrival of the Rayleigh wave, can be determined with great accuracy. The corresponding
value of yr then is

Yr = +Pr=V1+d. (13.89)

and the corresponding value of 6y is, with (13.80),

2 2
Or = amcsin(f_gz — :772 ) (13.90)

For values of 7 < ypr the pole is not on the path of integration, so that the integral can be evaluated immediately from equation (13.84), but for
values of 7 > ygr the pole is on the path of integration, and the integral must be separated into two parts,

T>yr : Gi(v,7) = Gu(v,7) + Gia(v, 7), 1391
where 0 % sin”
R—E 1-— 2y ) sin“ @
e / ( do 13.92
1= (7"—n) ; 1—8y2 +8(3 —2n2)yt —16(1 — n2)ys ( )
/2 (1—2y?)? sin? 0
e / y 20 13.93

where € is a very small number.
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The second integral

The second integral to be evaluated is Gz (v, T), see (13.78),

T 4 3002 _ 02 2 _ 1
/ v =)y dy. (13.94)
1 [1 =8y +8(3 —2n%)y* —16(1 — )yl 7> — y?

Go(v, 1) =

In this case a convenient substitution, which also removes the singularity at y = 7, is

y> =1+ (12 — 1)sin? 6, (13.95)
so that
ydy = (7% — 1) sinf cos 0 df, (13.96)
V2 —1= /72— 1sin6, (13.97)
and
V72— 2 = /72 — 1cosb. (13.98)
The integral (13.94) can now be written as
/2 2( 2 _ Q)Sin20
G —4(r -1 R do 13.99
2 7) =4lr )/0 1-8y% +8(3 —2n?)y* — 16(1 —n?)y® 1599

where the value of y now is determined by equation (13.95). Again, the integral can be calculated directly if 7 < yg, but for values of 7 > ygr
the integration interval must be separated into two parts, to calculate the Cauchy principal value.

13.2.4 Computer program POINTLOAD

A function that calculates the vertical displacement for given values of v and c¢4t/r is reproduced below.

double wpekeris(double nu, double t)

{
int j,k;

double pi,fac,n,nn,e,f,fa,a,b,g,s,ta,tt,tr,xa,xb,xr,dx,yy,ss,eps,epsl;
pi=4*atan(1.0);fac=1/(2xpi*pi) ;eps=0.000001;eps*=eps;eps1=0.001;
nn=(1-2%nu) /(2% (1-nu) ) ;n=sqrt (nn) ; e=0.000001;e*=e;f=1;b=(1-nu)/8;
if (nu>0.1) {while(f>e) {a=b;b=(1-nu)/(8*(1+a)*(nu+a)) ;f=fabs(b-a);}}
else {while (f>e) {a=b;b=sqrt((1-nu)/(8x(1+a)*(1+nu/a)));f=fabs(b-a);}}
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tr=sqrt(1+b); // tr indicates the arrival time of the Rayleigh wave
if (t<=n) g=0; // zero displacement before the arrival of the compression wave
else if (t<=1)
{
tt=t*t;xa=0;xb=pi/2;k=1000% (xb-xa) ;dx=(xb-xa) /k;fa=0;g=0;
for (j=0;j<k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=nn+(tt-nn) *ss;
a=(1-2%yy) * (1-2%yy) * (tt-nn) *ss; b= (1+8*yy* (-1+yy* (3-2*%nn-2*yy*(1-nn)))) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
}
else if (t>tr)
{
ta=t;if (t<tr-eps) ta=tr+epsl;tt=ta*ta;
xr=ArcSin(sqrt ((tr*tr-nn)/(tt-nn)));
xa=0;xb=xr-eps1;k=1000% (xb-xa) ;dx=(xb-xa) /k;fa=0;g=0;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=nn+(tt-nn) *ss;
a=(1-2xyy) * (1-2*yy) * (tt-nn) *ss; b= (1+8*yy* (-1+yy* (3-2*%nn-2*yy* (1-nn)))) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
xa=xr+epsl;xb=pi/2;k=1000* (xb-xa) ;dx=(xb-xa) /k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=nn+(tt-nn) *ss;
a=(1-2xyy) * (1-2%yy) * (tt-nn) *ss; b=(1+8*yy* (-1+yy* (3-2*nn-2*yy*(1-nn))) ) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
xr=ArcSin(sqrt ((tr*tr-1)/(tt-1)));
xa=0;xb=xr-eps1;k=1000% (xb-xa) ;dx=(xb-xa) /k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=1+(tt-1)*ss;
a=4*yy* (tt-1) * (yy-nn) *ss; b= (1+8*yy* (-1+yy* (3-2*nn-2*yy*(1-nn)) )) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
xa=xr+epsl;xb=pi/2;k=1000% (xb-xa) ;dx=(xb-xa) /k;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=1+(tt-1) *ss;
a=4*yy* (tt-1) * (yy-nn) *ss; b= (1+8*yy* (-1+yy* (3-2*nn-2*yy*(1-nn)))) ;
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f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}

else
{
ta=t;if (t>tr-eps) ta=tr-epsl;tt=ta*ta;
xa=0;xb=pi/2;k=1000* (xb-xa) ;dx=(xb-xa) /k;g=0;
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=nn+(tt-nn)*ss;
a=(1-2xyy) * (1-2*%yy) * (tt-nn) *ss; b=(1+8*yy* (-1+yy* (3-2*nn-2*yy*(1-nn))) ) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
for (j=0;j<=k;j++)
{
s=sin(xa+j*dx) ;ss=s*s;yy=1+(tt-1)*ss;
a=4*xyy* (tt-1) * (yy-nn) *ss;b=(1+8*yy* (-1+yy* (3-2*nn-2*yy*(1-nn)))) ;
f=a/b;if (j>0) g-=fac*(f+fa)*dx;fa=f;
}
}
return(g);

}

13.2.5 Results

Some results of the computations are shown in Figure 13.4, Figure 13.5 and Figure 13.6, for the values v = 0.00, v = 0.25 and v = 0.50. The
figures show the vertical displacements as a function of the variable c¢st/r. The case v = 0.25 is the case for which Pekeris (1955) obtained a
closed form solution. The results of the present computations are in good agreement with the original results of Pekeris.

The figures show that a first effect occurs when the compression wave arrives, and somewhat larger displacements occur upon arrival of the
shear wave, with a discontinuity in the slope of the curve. A singularity occurs upon arrival of the Rayleigh wave, but after the passage of this
wave the displacements remain constant. The values obtained for this final steady state displacement are in perfect agreement with the result
from the classical theory of elasticity,

P(1-v)

13.100
2mpr ( )

Ws =

Actually, for » = 0.00 the numerical solution gives w = 0.159 P/ur, for v = 0.25 the numerical solution gives w = 0.119 P/ur, and for v = 0.50
the numerical solution gives w = 0.0795 P/ur. These values compare very well to the results obtained using equation (13.100).
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Figure 13.4: Vertical displacement, v = 0.00.
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Figure 13.5: Vertical displacement, v = 0.25.
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Figure 13.6: Vertical displacement, v = 0.50.



Chapter 14

MOVING LOADS ON ELASTIC HALF PLANE

In this chapter some analytical solutions are derived for problems of vertical loads moving at constant speed over the upper boundary of the half
plane z > 0. The material is isotropic linear elastic with quasi-viscous damping to represent hysteretic damping. The method used is a Fourier
integral method (Sneddon, 1951). The analysis in this chapter is due to Verruijt & Cornejo Cérdova (2001). The solution for the undamped
case was given by Cole & Huth (1958). A large number of problems for moving loads, on beams, plates and half spaces, has been considered by

Fryba (1999).

14.1 Moving wave

In this section the problem of a moving sinusoidal wave on the half plane z > 0 is considered, for an isotropic elastic material with hysteretic
damping. This will be used as the basic case for the more general case of a moving strip load or a moving point load. Hysteretic damping is
defined as a special type of visco-elastic damping, the special property being that the damping ratio in each full cycle of loading is independent
of the frequency of the loading (Hardin, 1965; Verruijt, 1999).

14.1.1 Basic equations

The basic equations are the equations of motion,

e G = 112

For a linear visco-elastic material the stresses are related to the displacements by the following relations.
Opw = A (gz + gl:) + Am% <gz - ?)Z)) + QM% - Z/Ltr%%, (14.3)
Oup = A (gz + ?;:) + )\tT% (gz + ?;:) + 2,1;88—1: + 2Mtr%%’ (14.4)

353
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ou Ow 0 (Ou Ow
Ozz = [k <8Z + 89&) + Ntra (8z + 5,1,) ; (14.5)

where X\ and p are the Lamé constants of the material, and ¢, is a relaxation time. In order to describe hysteretic damping the value of ¢, should

be inversely proportional to the frequency of the loading.
Substitution of the equations (14.3) — (14.5) into (14.1) and (14.2) leads to the basic differential equations

A+ )E @-i-afw + @-ﬁ-@ + (A4 )tgﬁ 8u+8w +u ta @—l—@ = @ (14.6)
Moz \ox " 0z) "M\ 022 " 922 Woroton \ oz 02 "ot \oa2 T 922 ) T Por '
9 (Ou  Ow Pw  Pw 9 0 (Ou Ow 9 (0*w  *w 0w
A — =+ = —+ = A tr——— | — tr— | =—+ =5 | =p—=5- 14.
( +M)8z<8x+8z)+'u<82+82>+( ML TR <8x+8>+ 81&(8 +aZZ) P oe (14.7)
These equations can also be written as
2u 0w 0%u 03u OBw 03u 0%u
2 2t —— . . =p2 14.
A2 50 T Mg, t g T O 20t g g At b e M e P (148)
0%w 0%u 2w PPw 3u PPw 0w
it = - = . 14.
A2 57 + At wggs Fhge T O T 2b g + Mt b 5o g T M e — Vo (14.9)
It is assumed that the problem is to determine stresses and displacements in the half plane z > 0, subject to the boundary conditions
2=0: 0.5 =0, (14.10)
z2=0 : 0., = —poexplia(r — vt)]. (14.11)

These boundary conditions express that the half plane is loaded by a wave load normal to the surface, moving at a speed v, in positive z-direction.
Actually only the real part of the boundary condition applies, because the stress o, is a real quantity. This means that the real part of all
quantities should be taken to obtain physically meaningful results.

14.1.2 Solutions

The solutions are assumed to be of the following form,
au = Aexplia(x — vt)] exp(—aaz), (14.12)

aw = Bexplia(r — vt)] exp(—aaz), (14.13)
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where « is a given positive real constant, and the (complex) constant a is unknown. It is assumed that its real part is positive, so that the
solution will vanish for z — co. It is assumed that the imaginary part of a is negative, so that waves will propagate in positive z-direction (this
is Rayleigh’s radiation condition). If a = p — iq the solution will contain a factor of the form explia(gz — vt)], where ¢ is a positive number.

This ensures that for a fixed value of x the wave is propagated in positive z-direction.

The unknown coefficients A and B in general are complex. A factor « has been added to the variables so that the constants A and B will

be dimensionless.
The derivatives needed in the expressions for the stresses are as follows.

% = tAexplia(z — vt)] exp(—aaz),
ou )
5 = —Aaexplia(z — vt)] exp(—aaz),
ow . .
— = iBexplia(x — vt)] exp(—aaz),
Ox
ow ;
5 = —Baexplia(x — vt)] exp(—aaz),
z
Ou_ Aavexplia(z — vt)] exp(—aaz)
oxot P P ’
T~ oo explio(e — vb)] exp( o)
5ag — (Aacvexplialz — vt)] exp(-aaz),
2
% = Bawvexplia(z — vt)] exp(—aaz),
0w
7Y _iB o(r — —aaz).
55— LDaav explia(z — vt)] exp(—aaz)
The second and third order derivatives needed in the basic differential equations (14.6) and (14.7) are as follows.
0%u .
9z = —Aaexplia(z — vt)] exp(—aaz),
82u 2 .
92 = Aa“aexplia(x — vt)] exp(—aaz),
0w

= —Baexplia(xz — vt)] exp(—aaz),

da?

(14.14)

(14.15)
(14.16)
(14.17)
(14.18)
(14.19)
(14.20)

(14.21)

(14.22)

(14.23)

(14.24)
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0w 9 )
52 = Ba*aexplia(z — vt)] exp(—aaz), (14.25)
0?u , :
pr —tAaa explia(x — vt)] exp(—aaz), (14.26)
x0z
0w ) .
B —iBaaexplia(z — vt)] exp(—aaz), (14.27)
x0z
d3u 9 )
9220f iAa”vexplia(z — vt)] exp(—aaz), (14.28)
du
22201 = —iAd**vexplia(r — vt)] exp(—aaz), (14.29)
Pw 9 )
2 iBa“vexplia(x — vt)] exp(—aaz), (14.30)
&Bw
9201 = —iBa*a’vexplia(z — vt)] exp(—aaz), (14.31)
83U 2 .
w00 —Aaa®v explia(z — vt)] exp(—aaz), (14.32)
20z
3w
pe i —Bao?vexpla(z — vt)] exp(—aaz). (14.33)
20z

Substitution of these expressions into the equations (14.8) and (14.9) now leads to the following system of equations for the determination of
the constants A and B,
{[(N+2p) — pa® — pv®] — 2iC[(A + 2p) — pa®]} A+ (A + p)(1 — 2i¢)aB = 0, (14.34)

iA+ p) (1 —2iQ)aA + {[u— (A +2p)a® — pv?] — 2i¢[pu — (A + 2p)a®]} B =0, (14.35)

where the damping factor ( is defined by
2¢ = avt,. (14.36)

In order to represent hysteretic damping, rather than visco-elastic damping, the product of the parameters w = av and t,. should be considered as
a constant. Thus the parameter ( is an independent material parameter. This means that the relaxation time ¢, must be inversely proportional
to the frequency w = awv.

The equations (14.34) and (14.35) can be somewhat simplified by introducing the parameters

= /O 20) = (1 2)/201 - )] = &/, (14.37)
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& = pv?/pu=v?/c2 (14.38)

Here ¢, and ¢, are the propagation velocities of compression waves and shear waves in the elastic material. The system of equations (14.34) and
(14.35) now is
{1 =n*a®) (1 —2i¢) —n*¢} A+i(1 —n*)(1 - 2i¢)aB =0, (14.39)

i(1=n*)(1=2iQ)ad + {(n* — a®)(1 - 2i¢) — n*€*} B=0. (14.40)

It may be noted that the matrix of this system of equations is symmetric.
The system of equations has a non-zero solution only if the determinant A is zero. This determinant is defined as

| (A =n?a®)(1 = 2i¢) — n*€? i(1=n*)(1 = 2i¢)a
8= i(1=n*)(1 - 2i¢)a (n? — a?)(1 — 2i¢) — €2 (14.41)

or, after some elementary elaboration,
A=(1-a*2(1-2i¢)* — (1+7°)(1 —a*)(1 —2i¢)&* + n*¢. (14.42)

The condition that this must be zero leads to the possible roots

£? s &
l—ad?=-——, 1—-d= . 14.43
T g0 277 T (14.43)

For the undamped case (( = 0) the roots are real, 1 — a? = £2 and 1 — a3 = n?¢?, in agreement with the known results for this case (Cole and
Huth, 1958).

14.1.3 Solution 1

The first solution is determined by the root

2 2 2 s -2
2 £ (1—& +4¢%) —2i¢€
=1- = . 14.44
" 1—2iC 1+4¢2 (14.44)
This is written as
a? = R} exp(—2ib,), (14.45)

where Ry and 6; are determined by the equations
R4 _ (1 — 52 + 4C2)2 + 4§2£4 (14 46)
b (1+4¢2)? ’ '
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2¢€*
291 = arctan (]W) . (1447)
It is assumed that the angle 26, lies in the interval
0<20; <. (14.48)

It may be noted that this definition of the function arctan(z) is different from the usual definition of the principal value. The present definition
has been used so that the real part of a; is always positive and the imaginary part of a; is always negative. This ensures that the solution
vanishes for z — 0o, and that the waves are going out, from the boundary towards infinity (this is a form of the radiation condition). It may be
noted that the present definition of the interval also ensures that 26, is continuous when ¢ varies between 0 and co. If 26; would be defined in
the interval —7/2 < 26; < +7/2, the value of 26; would jump from 7/2 to —7/2 when &2 passes the value 1 + 4¢2.

The value of a; now is

a; = R1 exp(—iﬂl) =Pp1 — iql, (1449)

where
p1 = Rycos(61), ¢1 = Ryisin(6;). (14.50)

The value of pq, the real part of a;, is always positive because of the definition (14.48). This ensures that the solution will vanish for z — oo,
as required. The value of ¢; is also always positive, so that all waves will travel towards infinity.

The values of the real and imaginary parts of a; are shown graphically in Figure 14.1, for relatively small values of (. It may be noted that
the point £ = 0, ¢ = 0 corresponds to a; = 1. The point £ = 1, { = 0 corresponds to a; = 0, and the point £ = 2, ( = 0 corresponds to
a1 = —i\/3. The real part of a; is always positive, and the imaginary part is always negative.

Substitution of the value of a? into either of the equations (14.39) or (14.40) shows that the constants A; and B are related by

Al = —ia1 B = —i(pl — iql)Bl = —(Q1 =+ ipl)Bl. (14.51)
Thus the first solution is
au = —iay By explia(z — vt)] exp(—aiaz), (14.52)
aw = By explia(r — vt)] exp(—aiaz). (14.53)
The solution can also be written as
au = —(q1 + ip1) By explia(z + g1z — vt)] exp(—p1az), (14.54)

aw = By explia(r + q12 — vt)] exp(—praz). (14.55)
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Figure 14.1: First root a; as a function of £ and ¢, for small values of (.

14.1.4 Solution 2

The second solution is determined by the root

¢ (1?8 +4¢%) — 2i¢n°€?
1—2iC 1+ 4¢2 '

az=1
This is written as
a3 = RZ exp(—2i6s),
where Ry and 05 are determined by the equations
(1 —7?& +4¢%)* + 4"
(1+4¢2)? ’

RS =

(14.56)

(14.57)

(14.58)
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2(n*¢*
205 = t —_— . 14.59
> arcan(1n2€2+4<2 ( )
It is assumed that the angle 26, lies in the interval
0<20, <. (14.60)
The value of as now is
as = Ro exp(—if) = pa — igo, (14.61)
where
pa2 = Rocos(f2), g2 = Rasin(fs). (14.62)

The values of p; and ¢y are always positive because of the definition (14.60). This ensures that the solution will vanish for z — oo, and that the
waves will be propagated towards infinity, as required.

The values of the real and imaginary parts of as are shown graphically in Figure 14.2, for relatively large values of (. This is actually the
same figure as Figure 14.1, except that £ must be replaced by n£. It may be noted that the point £ = 0, ( = 0 corresponds to as = 1. For large
values of the damping parameter ( the values of ay all approach the point as = 1. The real part of as is always positive, and the imaginary part
is always negative.

Substitution of the value of a3 into either of the equations (14.39) or (14.40) shows that the constants Ay and Bs are related by

By = ias Ay = ’L'(pz — iQQ)AQ = (QQ + ’ipg)AQ. (1463)
Thus the second solution is
au = Ag explia(z — vt)] exp(—azaz), (14.64)
aw = iaz A explia(z — vt)] exp(—azaz). (14.65)
This solution can also be written as
au = Asexplia(z + qaz — vt)] exp(—paaiz), (14.66)
aw = (g2 + ip2)Ag explic(x + ga2z — vt)] exp(—pa2az). (14.67)

14.1.5 Completion of the solution

By addition of the two possible solutions the general solution is obtained,
au = [—iay By exp(—aiaz) + Aj exp(—azaz)| explia(z — vt)], (14.68)

aw = [By exp(—ajaz) + iag As exp(—azaz)| explia(z — vt)]. (14.69)
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Figure 14.2: Second root ag as a function of £/m and ¢, for large values of (.
The first order derivatives of these functions are
0
a—z = [a1By exp(—aiaz) + iAs exp(—azaz)] explio(z — vt)], (14.70)
ou .9 .
5= [ia3 By exp(—a1z) — as Az exp(—asaz)] explio(z — vt)], (14.71)
ow _ .
= [iBy exp(—a1az) — ag Az exp(—azaz)| explia(z — vt)], (14.72)
ow .2 .
= [~a1B1 exp(—a1az) — ia3 Ay exp(—azaz)] explia(z — vt)]. (14.73)

5 =
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It may be noted that the factor o, which was introduced in the general solutions for the displacements, equations (14.68) and (14.69), does not
appear in the derivatives, which are dimensionless.

14.1.6 First boundary condition

In order to satisfy the first boundary condition, which expresses that the shear stresses at the surface z = 0 are zero, the following combination
is needed,

ou Ow

(8— + a—) = [i(1 + af) By exp(—aia2) — 2a2 A exp(—asaz)] explia(z — vt)]. (14.74)
z x
It now follows that
t Q(@ + a—w) = —24C[i(1 + a?) By exp(—ajaz) — 2a3 Az exp(—a az)] explia(z — vt)] (14.75)
5 \a: T o) T 1)1 exp 1 2412 €Xp(—az p : .

Using these results the expression for the shear stress is

UZZE

= (1 —2i¢)[i(1 + a}) By exp(—ajaz) — 2a2 A3 exp(—asaz)| explio(z — vt)]. (14.76)
On the boundary z = 0 this must be zero, because of the boundary condition (14.10). This gives
2a2 A = i(1+a)B;. (14.77)

This enables to write the expression for the shear stress, eq. (14.76), in a slightly simpler form,

O—ZI

= 2a2A(1 — 2i¢) [exp(—aiaz) — exp(—azaz)] explia(z — vt)). (14.78)
Written in this form it can immediately be seen that the boundary condition of zero shear stress at the upper boundary z = 0 is indeed satisfied.

14.1.7 Second boundary condition

The second boundary condition refers to the vertical normal stress o.,, which is prescribed along the boundary z = 0, see equation (14.11),
z2=0 : 04, = —poexplia(r — vt)]. (14.79)
This stress can be expressed into the displacement components u and w by equation (14.4), which can also be written as

0., 1—=2n% 0u Ow 1—-2n2 0 ,0u Ow
= =42 (=) 2 ot
U n? (3x+ 8z)+ n? tr@t(8x+ 8z)+ + 2ty

(14.80)
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The first term (the volume strain) is, from (14.70) and (14.73),

Ju  Ow ) .

(% + 5) = i(1 — a3) Ay exp(—agaz) explia(z — vt)]. (14.81)
It may be noted that the volume strain due to the first solution, with the coefficient By, is zero. This suggests that the first solution represents
the shear waves.

It follows from (14.81) that
g ,0 0
tra (87Z + %) = 2((1 — a3) Ay exp(—azaz) explia(zr — vt)]. (14.82)

The value of dw/0z has been given in (14.73),

ow

9 [—GlBl exp(—ajaz) —ia3 Ay exp(—agozz)] explia(x — vt)). (14.83)
Differentiation with respect to t gives
sz ; . 9 .
t, 50t = 2i¢ (a1 By exp(—aiz) + ia3 Az exp(—azaz)] explio(z — vt)]. (14.84)

Using these results the expression for the vertical normal stress is

UZZ

= (1—2i¢)[i(—2+ 1/n* — a3/n*) Az exp(—asaz) — 2a1 By exp(—ajaz)| explia(z — vt)], (14.85)

or, because it follows from the definition of the roots a; and ag, see (14.43), that 1/n? — a3/n? =1 — a3,

Ozz

= —(1—2i¢) [i(1 + af) Az exp(—azz) + 2a1 By exp(—ajaz)] explia(z — vt)]. (14.86)
The boundary condition (14.79) now leads to the equation

. Po
1+ af)As +2a1B1 = ————— 14.87
i(1+ ai)Az + 2a1 By (1= 2i0)’ ( )
which is the second relation between the two constants As and By, the first relation being (14.77).
Equations (14.87) makes it possible to write the expression for the vertical normal stress, eq. (14.86), in a slightly simpler form,
U;Z = —% exp(—azaz) explio(z — vt)] + 2a1 (1 — 2i¢) B [exp(—azaz) — exp(—a1az)] explio(z — vt)]. (14.88)

Written in this form it can immediately be seen that the boundary condition for the vertical normal stress at the upper boundary z = 0 is
indeed satisfied.
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14.1.8 The two constants
The two constants Ay and B; can be determined from the equations (14.77) and (14.87). This gives
Po i(1 +af)
Ay — — 14.89
2 ,u(l — 21() (1 + CL%)Q — 4&1(12’ ( )
Po 2a;
By =— . 14.90
LT T - 20 (11 @) — dma (14.90)
This completes the solution of the problem for a traveling wave load.
14.1.9 Final solution
The final expressions for the displacements are
ipo 2a1az exp(—ajaz) — (1 + a?) exp(—azaz) )
= — ot 14.91
T I —2i0) 1+ a2P — daya explia(z — vi)], (14.91)
2 - —ay(1+a? -
aw = ——L0___ 202 exp(Za1az) 2a2( + ap) exp(—azaz) explia(x — vt)]. (14.92)
(1 —24Q) (14 af)? —4ajaz
The final expressions for the stresses are found to be
ore (14 a?)(1 —a? + 2a3) exp(—azaz) — 4ajas exp(—ajaz) _
— = — vt 14.93
& e explia(r — vf)], (14.98)
Oz (1 + a?)? exp(—azaz) — 4ajag exp(—ajaz) .
= = — — ot 14.94
" (It o) — dmras explia(r = of)) (1494
0s:  2iaz(1+ a?)[exp(—azaz) — exp(—ajaz)] .
= —vut)]. 14.95
e (i o explia(r — vf)] (14.95)
The isotropic stress og = %(Jm + 0..) is of a relatively simple form,
1+ a2) (a2 — a2 _
70 _ (1+61)(a5 — a1) exp(=a02) ri o)) (14.96)

Po (1—}—&%)2 —4aqas

This equation can also be derived immediately from the volume strain, of course.
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14.1.10 The displacement of the origin
Of particular interest is the vertical displacement of the surface z = 0 below the center of the load, for = vt. With (14.92) this gives

Po az(1 — a%)
= - . 14.97
W= "0 = 2i0) (1 +a2)? — daras (14.97)

It follows from the definition of aj, see (14.44), that 1 — a? = £2/(1 — 2i¢), hence

Po a2€2
S . 14.98
Y= 01— 2002 (1+ a2)? — daras (14.98)

The actual value of the displacement is the real part of this expression. This means that the amplitude of the displacement is determined by
the absolute value |wg|. This can be expressed in dimensionless form as

2
alu}l:)d| [ —121'(\2 [ a?;z'é— dara]’ (14.99)

All quantities in the right hand side of this equation can be expressed in terms of parameters introduced before. In fact,
11— 2i¢* = 1+ 4¢%, (14.100)
|az| = Ro, (14.101)
(1 +a7)* — 4aras| = VP2 + Q2, (14.102)

where

P = (1+p}—q})* — 4piqi — 4p1p2 + 4192, (14.103)
Q = 4p1gz2 + p2qn —p1n (14 pf — 4). (14.104)

The parameters in these expressions have been defined in sections 1.3 and 1.4.

The amplitude of the vertical displacement is shown as a function of the dimensionless velocity of the wave load v/c, in Figure 14.3, for
v = 0 and four values of the damping ratio (. The amplitude is shown as a ratio to the static value, obtained for v/cs — 0. It appears that
there is a definite peak in the displacements, which corresponds to the velocity of the Rayleigh wave in the undamped case. Actually, for v =0
the velocity of the Rayleigh wave is ¢, = 0.874¢s. The magnitude of the peak depends very much upon the value of the damping ratio (. A
damping ratio ( = 0.1 reduces the peak value to about three times the static value.
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0.0 - :
0.0 0.5 1.0 1.5 2.0 2.5 3.0

v/cs

Figure 14.3: Moving wave load, Dynamic amplification factor, v = 0.
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14.2 Moving strip load

The solution for a moving strip load can be derived from the previous solution using Fourier transforms. The boundary condition is supposed

to be | |
P | =po, if |x—uvt] <b,
z2=0: 0, = { 0, if|x—vt|>b. (14.105)

This boundary condition can also be written as

z2=0: 0., =— (14.106)

2po /°° sin(ab) cosla(z — vt)] do.
0

™ «

Comparing this with the boundary condition for the previous case, see (14.11), and remembering that the real part of this boundary condition
and of the solution should be considered only, it follows that the solution of the problem for a moving strip load (say F(z, z,t)) can be obtained
from the solution of the problem for a moving wave load (say f(z, z,¢,«)) by multiplication of the real part of the solution by a factor

2 sin(ab) o

T o«
and then integrating from o = 0 to @ = co. Hence
2 [ sin(ab t
Fz,z,t) = - / sin(ab)Rif(z, 2.6 )} 4, (14.107)
™ Jo o
or, because only the function f(z,y, 2,t) can be complex,
2 > sin(ab t
Flz, 2,t) = 4}%/ sin(@b)f(@,z,ta) (14.108)
™ 0 o

This is simply an application of the Fourier integral, of course. The same result could have been obtained by using the Fourier transform method
(Sneddon, 1951). It may be noted that in the formulation used here the parameter « is always positive.

14.2.1 Vertical displacement of the surface

Application of the Fourier integral (14.108) to the expression (14.98) for the vertical displacements gives, taking into account that the real part
should be taken,

_ 2o §R/ @R exp(ar0z) — (1 + ap) exp(—azaz)] sin(ab) explia(x — vt)] da. (14.109)

a?(1—2i0)[(1 + a?)? — 4ajas)
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Because the coefficients a1 and as depend upon the velocity factor £ (= v/cs) and the damping ratio ¢, but not on «, this can also be written as

__bo az(2I1 — (1 + a?)I3]
YT " (1-2i¢)[(1 + af)? — 4aras] j (14.110)
where o |
I — %/0 sin(ab) exp{a[;(;c —vt) — ay2]} da. m
_ 2 [ sin(ab) exp{ali(z — vt) — azz]} N
2= 7r/0 o? dav. (14.112)

Although these integrals are of a relatively simple form, they can not be evaluated in analytic form, because of the singularity for o = 0. This
is a well known property of elastic problems for a half plane with a load on its surface. The displacements can not be determined uniquely, and
the solution will have a logarithmic singularity. It is possible, however, to consider some special properties of the solution, by considering some
special points, for instance.

As an example one may consider the displacements of the upper surface z = 0. Then the two integrals (14.111) and (14.112) are equal,

L=T =1 — g/ sin(ab) explia(x — vt)] do, (14.113)
0

m o?

and the displacement of the surface is, using the definition of a; in (14.44),

_ Do ax&?

As before, the integral does not converge, but it is independent of £ and (. Of particular interest is the amplitude of the displacement. Because
the displacement will always be a sinusoidal function of time, it follows that

Po |as| €
wy| = — - Ipl. 14.115
il = 2P + B — dara] S
The static value is obtained by letting £ — 0. This gives
Po 1 po(l —v)
lws| = . [Io] = ——=—== |Iol. (14.116)
2u|1 = 2i¢| 1 —n? /1 + 4¢2
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5.0
4.0
3.0
|wal
|ws|
2.0
1.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
v/cs
Figure 14.4: Moving strip load, Dynamic amplification factor, » = 0.3333.
The ratio of the dynamic to the static displacement now is
2
[wal _ 0] € (14.117)

The dynamic amplification factor is shown in graphical form in Figure 14.4, for v =
this is the same relationship as for the wave loads, shown in Figure 14.3. These figures differ only because the value of v is different.

lws| (1= v)\/T+4C2|(1 + a2)? — dajas|

1
3

and four values of the damping factor {. Actually,
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14.2.2 Vertical normal stress

Application of the Fourier integral (14.108) to the expression (14.94) for the vertical normal stress gives, taking into account that the real part

should be taken,

where

Oz _ _%{ (1 + a%)Q(Jl + ZJQ) — 4(110,2(]3 + 1J4) }
Po (1 + a%)g — 4(11(12 ’

9 oo . _

no2 / sin(ab) cos[a(zr — vt + ¢22)] exp(—paaz) da,
™ Jo a
2 oo _: - —

. 7/ sin(ab) sinfa(z — vt + ¢g22)] exp(—paaz) da,
™ Jo a
9 oo g } _

52 / sin(ab) cos[a(z — vt + ¢1 2)] exp(—p1az) da,
™ Jo a
2 oo _: - —

52 / sin(ab) sm[a(ca; vt + q12)] exp(—piaz) da,
T Jo

These integrals can be evaluated using the standard integrals

Using these integrals it follows that

oo
/
0

sin(ax) cos(ay)

exp(—az)da = arctan{ yte } - arctan{ Y

(0%

> sin(aa) sin(ay) a1 M
2/0 — exp(—az)da = log{ e —y)z}'

;v—vt—i—qu—i—b}_lamtan{x—vt—i—qu—b}

1
J=— arctan{
T P2z s P2z

{pQZ + (7 — vt + goz + b)? }

7T p322 + (z — vt + gaz — b)?
1 t b 1 — vt —b
J5 = = arctan {w}  arcta Y i T
™ P11z
1 — ot b)?
Jy = —log plz “t(r vt qztb) }

27 + (x —vt+ q1z — b)?

— T

(14.118)

(14.119)
(14.120)
(14.121)

(14.122)

(14.123)

(14.124)

(14.125)

(14.126)
(14.127)

(14.128)
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It is now assumed that the width of the strip (2b) is very small, and the load pg is very large, so that the total load P = 2ppb remains finite.

The load then is a point load. Then the following approximations can be used,

2e

arctan(z 4 ) — arctan(z — ) ~ 1o
T

1og{%} ~ 2.

The expressions (14.125) — (14.128) now become

2b 2b 1
J1:7K1:7* D) P2 PR
z z mps+[(x—vt)/z+ ¢

ZbK 21 (x —vt)/z + g2

Jo = — =

2T 7 p3+ [(x — vt) /2 + ¢’

J _sz _Zbl 2!

5T 3_z7rp%—|—[(m—vt)/z+q1]2’
2 2b 1 —

J4:—bK _j (x —vt)/z+q1

2T T a @ -t/ 2+ a)?
We now write, by definition of the factors C' and D, which will depend upon £ and (,

(1+a2)?

1 .
=5+C+1iD.
1+ a?)2 — dayay 5 +0C 41

1

Then 4
—2a102 1 .
=5;—-C—iD
(1+a?)? —4aras 2 e

(14.129)

(14.130)

(14.131)

(14.132)
(14.133)

(14.134)

(14.135)

(14.136)

because the sum of these two quantities must be 1. Now taking into account that the stress o, is the real part of eq. (14.118), it follows that

Tyz2

p
where P is the total load, P = 2pgb, and the functions K; — K4 have been defined in eqs. (14.131) — (14.134).

= (K1 + K3) + C(K; — K3) — D(K» — Ky),

(14.137)

Equation (14.137) is the final expression for the vertical normal stress. The functions K; — K, can easily be expressed in terms of the
constants defined before, and the variable (z — vt)/z. The constants C and D can also be expressed in the constants defined before, as will be

shown below.
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It follows from (14.135) that
(1 + a%)2 + 4aqas

D = 14.1
O = 0T a2 daras]’ (14:135)
which enables to determine C' and D. Actually, one may write
(1+a3)? = fi+igr = [(1+p7 = ¢)? — 4piqi] +i[—4p1n (1 + pT — ¢7)], (14.139)
daraz = fa+ig2 = [4(p1p2 — q192)] + i[—4(p1g2 + P2¢1], (14.140)
o that fitigt ot (1 + fa) + i1 + 92)
. +191 + f2 + 192 1+ f2) +u(g1 + g2
C+iD=-2L""% 2 _ . 14.141
2(f1 +ig1 — fa —ig2)  2[(f1 — f2) +i(g1 — g2)] ( )
This means that
= (f1+ f)(f1 = f2) + (1 +92)(91—92)7 (14.142)
2[(f1 = f2)* + (91 — 92)?]
D_ (fr — f2)(91 +92)*(f1+f2)(91*92). (14.143)

2[(f1 = f2)* + (91 — 92)?]
These expressions enable to evaluate numerical values of the vertical stress.

The distribution of the vertical normal stress is shown in graphical form in Figures 14.5 and 14.6 for v = 0 and for two values of the damping
ratio: ¢ = 0.01, ( = 0.1, respectively.

The two figures show the stress distributions for three values of the velocity, v/cs = 0.001, v/c; = 0.8 and v/c, = 2.0. The case v/cs = 0.001
can be considered to be very close to the static case. The stress distribution for this case is in agreement with the classical Flamant solution
(Timoshenko & Goodier, 1970), as is indeed the case in both figures. The maximum value of the stress in this case occurs for (x — vt)/z = 0,
and its theoretical value is 0,,2/P = 2/m = 0.637. The values that can be read from the two Figures 14.5 and 14.6 are close to the theoretical
value.

For the case v/cs = 0.8 the results for ¢ = 0.01 are in reasonable agreement with the undamped solution given by Cole & Huth (1958), see
also Fryba (1999). A comparison with this solution will be presented in some more detail later. The location of the two pulses for the supersonic
case v/cs = 2.0 are also in good agreement with the results obtained by Cole & Huth for the undamped problem. Actually, the two singularities
are given by (z — vt) = —|a,|z and (v — vt) = —|a,|z. In the undamped case the values of |a | and |a,| are, for v = 0 and v/cs = 2: |as| = V/3
and a, = 1, which is in agreement with the location of the peaks in Figure 14.5.

For larger values of the damping ratio ¢, see Figure 14.6, the results indicate that the effect of a moderate amount of damping is sufficient to
limit the maximum stresses to the level of the static stresses. This is an important result. It means that the damping properties of soils eliminate
the extreme peaks in the stresses that occur in an elastic material without internal damping. This does not mean that it is advisable to construct
infrastructure for moving loads on soft soils. Peaks in the stresses may be avoided by the damping of the material, but the displacements will
be very large, because the material is so soft.



Arnold Verruijt, Soil Dynamics : 14. MOVING LOADS ON ELASTIC HALF PLANE 373

(x —wt)/z

Figure 14.5: Moving point load, vertical normal stress, v = 0.0, { = 0.01.
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-3 -2 -1 0 1 2 3
(x —wt)/z

Figure 14.6: Moving point load, vertical normal stress, v = 0.0, { = 0.1.
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Figure 14.7 shows a comparison of the present solution for a very small value of the damping ratio with the solution by Cole & Huth (1958)
for a purely elastic material, without damping. The left half of the figure indicates the solution of Cole & Huth, the right half of the figure
represents the present solution with ¢ = 0.000001. The two solutions are indistinguishable, confirming that the present solution is a proper
generalization of the earlier solution by Cole & Huth (1958).

1

-3 —2 —1 0 1 2 3
(x —wt)/z

Figure 14.7: Comparison of solutions, v = 0.333333.
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14.2.3 Isotropic stress

Of the other stress components the isotropic stress og = %(Jm +0..) is perhaps the simplest one to evaluate. Application of the Fourier integral
(14.108) to the expression (14.96) gives

90 :%{ (1+a1)(a27a1)(‘]1+2‘]2)} (14144)
Po (1 + al) 4aias
where the integrals J; and Jo have been defined in eqgs. (14.119) and (14.120).

We now write, by definition of the constants F and F,

(1+ai)(a3 — af)
(1+a?)? — 4ayaz

= F +iF. (14.145)

Furthermore it is again assumed that the width of the loaded strip (2b) is very small. In that case eq. (14.144) reduces to

‘%f — R{(E +iF)(K, +iKy)} = EK, — FK,. (14.146)

This is the final expression for the isotropic stress. The constants E and F' can be calculated by elaborating the definition (14.145). This gives

[(1+p? —q?) — 2ip1an][(P3 — P? — &3 + ¢F) + 2i(p1n — p2g2)]

E+iF = : 7 14.147
(fi = f2) +i(g1 — g2) ( )
from which it follows that ( \( )4 ( o — g0)
us —vt)(f1 — fo) + (vs + ut
jo , 14.148
(fi = f2)* + (g1 — g2)? ( )
(vs +ut)(f1 — f2) — (us — vt)(g1 — g2)
F= , 14.149
(fi = f2)? + (g1 — 92)? ( )
where
u=1+p? —qi, (14.150)
v=—2p1q1, (14.151)
s=p3—pi — & +4i, (14.152)
t=2p1q1 — 2p2qa. (14.153)

This enables to elaborate the isotropic stress.
Some examples are shown in Figure 14.8, for a practically undamped material, and three values of the velocity. The pseudo-static case
v/cs = 0.001 is in agreement with the elastostatic solution (Timoshenko & Goodier, 1970).
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-3 -2 -1 0 1 2 3

(x —vt)/z

Figure 14.8: Moving point load, isotropic stress, v = 0.0, ( = 0.01.

14.2.4 Horizontal normal stress

The horizontal normal stress o,, can most simply be evaluated by noting that
Opz = 200 — Oz (14.154)

Some examples are shown in Figure 14.9, for a practically undamped material, and three values of the velocity. As before, the pseudo-static
case v/cs = 0.001 is in agreement with the elastostatic solution (Timoshenko & Goodier, 1970).

14.2.5 Shear stress

Application of the Fourier integral (14.108) to the expression (14.95) for the shear stress gives, taking into account that the real part should be
taken,

Ogz _ §R{ Ziaz(l + a%)(Jl +iJy — J3 — ’LJ4) }7

14.155
Do (1+a?)? — 4ajaz ( )
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-3 —2 -1 0 1 2 3
(x —vt)/z
Figure 14.9: Moving point load, horizontal normal stress, v = 0.0, ¢ = 0.01.
or, in the limiting case b — 0,
2ias (1 + a?) (K + iKy — K3 —iK.
Tuz? :§R{ iap(1 + 01)(F) + iKs — K — 8 4)}. (14.156)
P (1+a%)? —4ayas
This can be elaborated by writing
2ias (1 + a?) .
=G+iH. 14.157
(1+a?)? — 4ajas T ( )
Then the final expression for the shear stress is
% = G(K — K3) — H(K, — K)). (14.158)
The constants G and H can be calculated by elaborating the definition (14.157),
2 ip2)[(1+p —qf) — 2i
G if = 2@t )L+l —af) = 2ipiar] (14.159)
(fi = f2) +i(g1 — 92)
It follows that ) )
G: (qZU_pQU)(fl _f2)+ (p2u+q21})(gl _92) (14160)

(fi = f2)%2+ (g1 — 92)? ’
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-3 —2 -1 0 1 2 3

(x —vt)/z

Figure 14.10: Moving point load, shear stress, » = 0.0, ¢ = 0.01.

(p2u + g2v) (f1 — f2) — 2(g2u — p2v)(g1 — g2)
(fr = f2)* + (91 — 92)°
Some examples are shown in Figure 14.10, for a practically undamped material, and three values of the velocity. As before, the pseudo-static
case v/cs = 0.001 is in agreement with the elastostatic solution (Timoshenko & Goodier, 1970).

2
H:

. (14.161)



Chapter 15

FOUNDATION VIBRATIONS

F In this chapter the problem of propagation of vibration of waves
in soils due to vibrating foundation elements is considered. The
type of problem is illustrated in Figure 15.1, which shows a
heavy foundation on an elastic foundation, whose response due
to a vibrating force is to be determined.

The purpose of the discussions in this chapter is not to derive
rigorous theoretical solutions, but rather to describe practical
< methods of analysis, based upon theoretical solutions presented

in earlier chapters, and in the literature, see e.g. Richart et al.
(1970), Gazetas (1991).

Figure 15.1: Foundation element on soil.

15.1 Foundation response

In this section the response of a footing on an elastic soil will be considered. The mass of the footing (perhaps including the mass of the machine
causing the vibrations) is denoted by M. The response of the foundation mass depends upon the applied load and the soil reaction. If the
contact pressure between the foundation mass and the soil is denoted by p, the equation of motion of the foundation mass is

d2
F—pA= M%, (15.1)

where A is the area of the footing, and w is the vertical displacement of the footing. It is assumed that the footing is completely rigid, and that it
remains in contact with the soil at all times, so that the displacement of the footing w is equal to the displacement of the soil surface immediately
beneath it. It is now assumed that the applied force, the soil reaction, and the displacement are all periodic, with a circular frequency w,

F = Re[Fp exp(iwt)], (15.2)

p = Re[pp exp(iwt)], (15.3)

380
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w = Re[wp exp(iwt)]. (15.4)

Substitution of these equations into (15.1) gives
Fy = poA — w? Muwy. (15.5)

In earlier chapters the response of the soil to a periodic load was generally found to be also periodic, but with a certain phase difference. In
general one may therefore write

pod = (K +iwC)wo, (15.6)

where the dynamic stiffness K and the dynamic damping C' may depend upon the frequency w, and upon parameters such as the shear modulus
G, the soil density p and the dimensions of the foundation plate, for instance the radius of a circular plate a. Substitution of (15.6) into (15.5)
gives

Fo = (K +iwC — w? M)wy. (15.7)

This is the standard form of the differential equation for the response of a single mass system, supported by a spring of stiffness K and a
damper having a viscosity C'. This system has been considered in great detail in chapter 1. All results obtained there, such as the occurrence of
resonance at certain frequencies, and the influence of damping upon the maximum response, can be immediately applied to the present system,
but taking into account that the stiffness K and the damping C' may depend upon the frequency w.

It remains to determine the dynamic parameters K and C' for a particular system. This requires the solution of the response problem of the
soil for that particular case.

Circular footing

In chapter 10 the problem of a circular footing of radius a on a confined elastic half space has been considered. For this case the relation between
the amplitudes was found to be, see equation (10.135),

_ pomasin(w/w.) ext( i /o
Wo = ()\ + 2,U,> (w/wc) p( / c)]a (158)

where m is a material constant, defined by
2 A2 2(1—v)

= 15.9
. 5y (15.9)
and where w, is a characteristic frequency, defined by
4
wi=—1 (15.10)

_E.
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It should be noted that this is an approximate solution, derived under the assumption that the horizontal displacements are negligible, compared
to the vertical displacements. In eq. (15.6) the inverse relation of (15.8) is needed. This inverse relation is

(A +2p) (w/we)

po = e sin(w)on) exp(iw/w.) wo. (15.11)
Comparing this with eq. (15.6) shows that
)
K = A. 15.12
+iwC masin(w/w.) exp(iw/w.) (15.12)
With A = 7a? it now follows that o
K= WH2me (w/we) (15.13)
m tan(w/w.)
and \ 1o
C = M. (15.14)
mwe

These values will be used in the next section.

It is convenient to write the last term of eq. (15.5), which represents the influence of the mass M, in a somewhat different form, to let it
include the effect of the mass of the soil. For this purpose the mass of the foundation M is expressed into a representative mass of the soil by
writing

4pa’ 4pA

1—v (1 —v)
where B is a dimensionless factor, the mass ratio, representing the ratio of the mass M of the foundation to the mass of a volume of soil below
it. The form of this expression is suggested by the form of a similar factor introduced by Lysmer and Richart (1966).

Because w? can be expressed as in equation (15.10), the mass M can also be written as

16Au 16A(N + 2u)
B = .
wa(l — v) w? mm?a(l — v) w?

M

B, (15.15)

M= (15.16)

Substitution of (15.16) and (15.12) into eq. (15.7) finally gives the following relation between the amplitudes of the applied force and the
displacement,

Fo _ A+2u iexp(iw/wc) 16B w2
A ma [wc sin(w/w.)  mm(l —v) (wc) }wo. (15.17)

In the static case, with w — 0, the value of sin(w/w.) can be approximated by w/w., and one obtains

w—0: —=
A ma

ws. (15.18)
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The static displacement wy is a reference value, which can be used to present the final results in dimensionless form. Using this reference value

lwo/ws|
4
| ) B=50
9 /\ B=2.0
B=1.0
B=0.5
1
§ =0.0
0 \\\§>“
0 1 2

Figure 15.2: Dynamic response of footing, v = 1/3.

w/wo

the dynamic response can be written as

wo ie)fp(iw/wc) ~_ leB (i)z}—l. (15.19)
W we sin(w/wg)  TmM(l —v) ‘w,

This expression gives the dynamic multiplication factor. For v = 1/3 the
absolute value of the factor wy/w; is shown in Figure 15.2, for various values
of the mass ratio B.

It appears that for sufficiently large values of the mass ratio B a certain
resonance may occur, for frequencies in the order of magnitude iwo. For
frequencies large compared to wy the amplitude of the dynamic vibrations
tends towards zero.

It is interesting to also show the force on the soil, as a ratio of the force
applied to the foundation mass. From eqgs. (15.11) and (15.17) it follows that

[ 0By ol 17 (g5

Fy (1-v) (uTo) exp(iw/wy

This function is shown in Figure 15.3, for various values of the mass ratio B and for v = 1/3. When the foundation has no mass (B = 0) the entire

poA/Fy
4 i)
B =15.0
3 \/\B =2.0
B=1.0
2
BRBZ 0.5
1 B =0.0
kéi
0
0 1 2

w/wo

Figure 15.3: Force transmitted to half space, v = 1/3.

force is transmitted to the soil, of course. For larger values of the mass
ratio the force on the soil may be somewhat smaller than the applied force,
because part of the force is used to move the foundation mass. It can be seen,
however, that the force between foundation and soil may also be considerably
larger than the applied force. It may also be mentioned that for very high
frequencies the force transmitted to the soil may be extremely large, at least
in theory.

Although the results shown in Figures 15.2 and 15.3 should be considered
as indicative only, because of the approximate character of the solution used
to construct them, it is interesting to note that the general shape of the
functions shown in the figure is very similar to the behaviour obtained by
Lysmer and Richart (1966) for a circular footing, which is based upon a
more rigorous analysis. This gives support to the results of the approximate
analysis used here, which is based upon confined elastic deformations.
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15.2 Equivalent spring and damping

The procedure described in the previous section can easily be generalized, on the basis of the response function of the soil to a surface load. All
that is needed is to write the relation in the form of eq. (15.6),

poA = (K + iwC)wyp. (15.21)

For one particular case, namely the response of a confined elastic half space due to a uniform load on a circular area, approximate relations have
been derived in the previous section. There it was found, see (15.13) and (15.14) that

(A +2p)ma (w/we)

K= 15.22
m tan(w/we)’ (15:22)
and \ i
o= A+2ma (15.23)
mwe

The formula for the spring constant is a function of the frequency w, but it is a slowly varying function, so that it can be approximated reasonably
well, at least for relatively small frequencies, by the elastic value

A+2
ww, » K= QA+ 2p)ma = Tuma. (15.24)
m

The expression for the dynamic damping C' can be written in a somewhat different form by using equations (15.9) and (15.10). The result is

C = Lrma®\/pp, (15.25)

which is a constant, depending upon the area of the loaded surface, and the soil properties, but independent of the frequency.

A more general procedure, based on work of Lysmer and Richart (1966), is as follows (see also Gazetas, 1991). The spring constant K is
defined by the elastic deformation of the footing in static conditions. For a rigid circular plate of radius a, for instance, the relation between the
applied load and the displacement is (Timoshenko & Goodier, 1970)

(1 —v*)pa
= 15.26
v 2E (15.26)
so that for this case A
K=-—r (15.27)

1
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This closely resembles the expression (15.24), which is of course not very surprising, as they all express the stiffness of an elastic half space.
Relations of this form are very common in soil dynamics, see for instance Richart, Hall & Woods (1970).
The dynamic damping C' can be obtained for various cases, at least as a first approximation, by trial and error, and curve fitting. A convenient
choice, due to Lysmer, appears to be (Gazetas, 1991)
3.4a%,/
=220V (15.28)
1—-v
which closely resembles (15.25). Again, relations of this form are often used in soil dynamics.
The damping ratio ¢, which plays an important role in the analysis of dynamic systems, is usually defined as

C
KM’

For the case of a rigid circular foundation plate, the mass ratio B is usually defined as follows (Richart, Hall & Woods, 1991, p. 204), see also
equation (15.15),

(= (15.29)

1—-v)M
B= % (15.30)
4pa
With (15.13), (15.14) and (15.30) equation (15.29) can also be written as
0.425
(== (15.31)

VB

This shows that for a very small mass of the foundation the damping ratio will be very large, because then the mass ratio is small. For a very
large mass of the foundation the damping ratio is small, because then the mass ratio is large. All this is due to the fact that the dynamic
damping of the elastic half space, which is caused by radiation damping, is constant.

Expressions for equivalent dynamic stiffnesses K and for equivalent dynamic dampings C for various cases are given, for instance, by Gazetas
(1991). These include foundations with various shapes of the contact area, footings loaded by lateral or rocking loads, and buried foundations.

15.3 Soil properties

In order to determine the response of a foundation to vibrations the soil parameters needed are the density p, the shear modulus G, and the
Poisson ratio v. Of these the density can most easily be determined or estimated. Moreover, its variability is rather restricted : most soils have
a density of about 1600 kg/m? when completely dry, and about 2000 kg/m? when completely saturated.

Poisson’s ratio is usually not so easy to measure, or to estimate. Fortunately, its value does not influence the results very much. Common
values are in the range from 0.3 (for sand) to 0.5 (for clays, or saturated soils).
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The most important parameter is the shear modulus G. Its
~— value may vary between fairly wide limits, and its influence on
N the results is very large. A complication is that the value of
\ the shear modulus for natural soils depends very much on the
magnitude of the shear strains. For very small strains the shear
G . modulus may be a factor 10 or even 100 larger than it is for
large strains. A typical example is shown in Figure 15.4. Thus
it is very important to know beforehand the order of magnitude
N of the shear strains.

The actual value of the shear modulus may be determined
0. D from laboratory tests, or from a field test. In field tests it is usu-
107° 107 10~ 107 107 ally the propagation velocity of shear waves ¢4 that is measured
Shear strain -y ¥ Vi probag Y s ‘

The shear modulus then follows from the formula

Figure 15.4: Dynamic shear modulus. G = p’cs. (15.32)

Again it is of importance to note the dependence of the shear modulus on the shear strain level. A value measured using very small deformations
may not be representative for a case in which large deformations can be expected.

15.4 Propagation of vibrations

In previous chapters the propagation of vibrations in space has been investigated for various cases. These were restricted to linear elastic
materials, in which the only damping is due to radiation. In real soils some damping may occur due to irreversible deformations (material
damping). This is very difficult to estimate theoretically, but it may be quite significant, especially for large vibrations and soft soils. Theoretical
solutions, which are available only for a few cases of linear elastic bodies, usually indicate that the amplitude of the vibrations decays with the
radius r of the distance in the form ro/r (for a wave from a cavity in an infinite body), or y/7o/r (for Rayleigh waves on the surface of a half
space).

In order to include the effect of material damping as well, in addition to the radiation damping, Bornitz (1931) has suggested to use a formula

of the type
w To
- /2 — — 15.
o \/ " exp(—a(r — o)) (15.33)

The value of the parameter a may vary between 1/(30 m) for very stiff soils to 1/(6 m) for very soft soils (Barkan, 1962).
The best procedure to determine the value of « in engineering practice is to perform a field test, in which the attenuation of the response to
the action of a vibrator (or, more simply, to a dropped weight) is measured at various distances from the source of the disturbance.
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15.5 Design criteria

Vibrations in the soil may cause serious damage to structures. This means that strong vibrations, such as caused by pile driving or heavy traffic,
may not be allowable in the vicinity of sensitive structures. In order to give criteria for the assessment of the possibility of damage the vibrations
are usually represented by a harmonic vibration of the type

u = ug sin(wt) = ug sin(27 ft), (15.34)

where ug is the amplitude of the vibration, w is the circular frequency, and f is the frequency expressed in cycles per second (Hz). The velocity
corresponding to this vibration is

v = wug cos(wt) = 27 fug cos (27 ft), (15.35)
and the acceleration is
a = —w?ug sin(wt) = —47? f2uq sin(27 ft). (15.36)
If the amplitude of the velocity is denoted by vy and the
1072 1073 10~* amplitude of the acceleration is denoted by ag, it follows
10 T T iwal h
T T ZEEZ that

105

vg = 27 fuyg, (15.37)
and
! i 2 o

e ag = 47 f“ug. (15.38)

H10-6
acceleration displacement Design criteria are often expressed in terms of allowable
(m/s?) (m) velocities or allowable accelerations, as a function of the
10-1 / frequency. Such criteria can conveniently be represented
égi graphically in a diagram such as shown in Figure 15.5.
at 10-7 In this diagram the relation between frequency, displace-
ment and acceleration is given. The basic variables in
the diagram are the frequency f, and the amplitude of
10-2 the acceleration ag. The frequency f is constant along
0.1 1 10 100 vertical lines, and the acceleration is constant along hor-

frequency (Hz) izontal lines. A point in which the acceleration is a*
corresponds to a displacement a* /(472 f?). This means
Figure 15.5: Frequency, displacement and acceleration. that the displacement is constant along lines of constant
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a/f?%. These lines are shown in the diagram as lines with a slope 2:1. They give the displacement corresponding to a certain acceleration and
a certain frequency. Similarly, lines of constant velocity would be lines with a slope 1:1. They are not shown in the figure. As an example one
may consider the point on the lower horizontal axis along which the acceleration is ag = 1072 m/s, and the displacement is ug = 102 m. With
eq. (15.38) the frequency is then found to be f = 0.159.
. ) An alternative, even more convenient representation is
) accelegatlon (m/s%) . shown in Figure 15.6. In this figure the basic parameters
10 10 10 10 are the frequency f and the amplitude of the velocity vg.
102 Lines of constant displacement uy = ¢ can now be rep-
resented by lines with a slope 1:1 because, with (15.37),
vy = 27 fug. Similarly, lines of constant acceleration, say
ap = d can be represented by lines having a slope 1:1 in
1 s s downward direction because, with (15.37) and (15.38),
10*3 Vo — a0/27rf.
SREDZZY SRED 7Y As an example, or a check, one may consider the point
velocity displacement for which f = 1 and vg = 107! m/s. In this case the
(m/s) 8 (m) corresponding displacement is, with eq. (15.37), uy =
10-1 s 0.0159 m. This value is indeed indicated by the scale
5 10— of displacements on the right, together with the upward
sloping lines of constant displacement. The acceleration
is found to be ag = 0.628 m/s?, which is indicated by the
§ scale of accelerations at the top of the figure, together
10-2 s s g with the downward sloping lines of constant acceleration.
0.1 1 10 100 Several countries have established design criteria in
frequency (Hz) their building standards. Such a standard may, for in-
stance, give a maximum velocity for various categories
of buildings, distinguishing between newly constructed
general purpose buildings, houses and masonry structures, and monuments or very sensitive buildings.

Normal values for the allowable velocities are 16 mm/s, 6 mm/s, and 3 mm/s. These values are the allowable vibrations of structural
elements, for the three categories of buildings. Allowable vibrations of the foundation or the soil in its immediate vicinity, are usually much
smaller, of the order of magnitude of 4 mm/s or 2 mm/s. For tall buildings the allowable vibrations at the top levels of the structure may be
considerably larger (say 40 mm/s, 15 mm/s or 8 mm/s for the three categories of buildings mentioned above) because swaying of the structure
may occur without causing structural damage. In very tall buildings (skyscrapers) the displacements and velocities may become so large that
they cause severe discomfort for the residents, even though the structure itself is perfectly safe. In some of these buildings movable masses have
been installed which counteract the natural vibrations, to reduce the discomfort.

Figure 15.6: Frequency, displacement, velocity and acceleration.



Appendix A

INTEGRAL TRANSFORMS

In this appendix a brief review is given of some integral transform methods. These are techniques used to reduce a differential equation to an
algebraic equation. The main transforms are the Laplace transform, the Fourier transform and the Hankel transform. These will be presented
here, together with some of their main properties. Derivations of the theorems will be given in condensed form, or not at all. Complete
derivations are given by Titchmarsh (1948), Sneddon (1951) and Churchill (1972). Extensive tables of transforms have been published by the
staff of the Bateman project (Erdélyi et al., 1954).

Short tables of Laplace transforms, Fourier transforms and Hankel transforms are presented, with references to their derivation, and some
numerical illustrations and verifications.

Finally, an elegant and effective method is described for the determination of the inverse Fourier-Laplace transform for certain problems, in
particular problems of elastodynamics (De Hoop, 1960).

A.1 Laplace transforms

A.1.1 Definitions

The Laplace transform is particularly useful for problems in which the variables are defined in a semi-infinite domain 0 < ¢ < co, where ¢ may,
for instance, be the time, and ¢ = 0 indicates the initial value of time. The Laplace transform of a function f(¢) is defined as

F(s) = /000 f(t) exp(—st) dt, (A1)

where s is a parameter, which is assumed to be sufficiently large for the integral to exist. By the integration over the time domain, for various
values of s, the function f(t) is transformed into a function F(s). For various functions the Laplace transform can be calculated, sometimes
very easily, sometimes with considerable effort. Tables of such transforms are widely available (Churchill, 1972; Erdélyi et al., 1954). A short
table is given in table A.1. The integrals in this table can all be evaluated with little effort, using techniques such as partial integration.

389
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The fundamental property of the Laplace transform appears when considering the transform of the time derivative. Using partial integration

this is found to be

Thus differentiation with respect to time is transformed into multiplication by s, and subtraction of the initial value f(0).

dt

/OOO df (t) exp(—st) dt = sF(s) — f(0).

No. | f(t) F(s) = [,° f(t) exp(—st)dt
1
1 |1 -
s
1
2 |t 2
!
3 | S:fh
1
4 | exp(at)
s—a
. a
5 | sin(at) o
s
6 COS(at) m
7 sin(at) arctan(g)
t s

Table A.1: Some Laplace transforms.

(A.2)
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A.1.2 Example

In order to illustrate the application of the Laplace transform technique consider the differential equation

df (t) _
=5 T2=0, (A.3)

with the initial condition f(0) = 5. Using the property (A.2) the differential equation (A.3) is transformed into the algebraic equation

(s+2)F(s)—5=0, (A.4)
the solution of which is 5
F(s) = PR (A.5)
Inverse transformation now gives, using transform no. 4 from table A.1.1,
f(t) =5 exp(—2t). (A.6)

Substitution into the original differential equation (A.3) will show that this is indeed the correct solution, satisfying the given initial condition.

This example shows that the solution of the problem can be performed in a straightforward way. The main problem is the inverse transfor-
mation of the solution (A.5), which depends upon the availability of a sufficiently wide range of Laplace transforms. If the inverse transformation
can not be found in a table of transforms it may be possible to use the general inverse transformation theorem (Churchill, 1972), but this requires
considerable mathematical skill.

A.1.3 Heaviside’s expansion theorem

A powerful inversion method is provided by the expansion theorem developed by Heaviside, one of the pioneers of the Laplace transform method.
This applies to functions that can be written as a quotient of two polynomials,

F(s) = 28 (A7)

where ¢(s) must be a polynomial of higher order than p(s). It is assumed that the function g(s) possesses single zeroes only, so that it may be
written as

q(s) =(s—s1)(s—82) (s —85). (A.8)

One may now write

F(s) =22 = + o (A.9)
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The coefficient a; can be determined by multiplication of both sides of eq. (A.9) by (s — s;), and then passing into the limit s — s;. This gives

R Gt 01 (C)
a; = sl_mi a(5) . (A.10)

a; = p(si_) . (A.11)

Inverse transformation of the expression (A.9) now gives, using formula no. 4 from table A.1.1,

Z p/ exp sit). (A.12)

Sy
z:lq i)

This is Heaviside’s expansion theorem. It provides a useful method to determine the inverse Laplace transform of functions of the form (A.7). I
can also be used to determine the inverse transform of functions of a more general form, although such inverse transforms can usually be found
in a more general way by application of the complex inversion integral (Churchill, 1972).
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A.2 Fourier transforms

A.2.1 Fourier series

For certain partial differential equations the Fourier transform method can be used to derive solutions. These include problems of potential flow,
and elasticity problems, especially in the case of problems for infinite regions, semi-infinite regions, or infinite strips. The main principles of the
method will be presented in this section.

The main property of the Fourier transform can most easily be derived by first considering a Fourier series expansion. For this purpose let there
be given a function g(6), which is periodic with a period 27, such that g(6 + 27) = g(). This function can be written as

g(0) = %AO + Z{Ak cos(k0) + By sin(l<:09)}7 (A.13)
k=1
where
I
Ay = f/ g(t) cos(kt) dt, (A.14)
T™J—m
and
1 [t
Be=1 / o(t) sin(kt) dt, (A.15)
i —T

These formulas can be derived by multiplication of eq. (A.13) by cos(j#) or sin(j#), and then integrating the result from § = —7 to = 4. It
will then appear that from the infinite series only one term is unequal to zero, namely for k = j. This leads to egs. (A.14) and (A.15).

For a function with period 27 the Fourier expansion can be obtained from (A.13) by replacing 6 with z/l, ¢ by t/l and then renaming g(x/I)
as f(z). The result is

Fa) = %Ao + 3 {Ax cos(ha/l) + Bysin(kz/)}, (A.16)
k=1
where now
1 +l
Ap = — f(t) cos(kt/l) dt, (A.17)
ml —l
and
1 +l
By = f(t) sin(kt/l) dt. (A.18)

B ml —ml
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Example

As an example consider the block function defined by

0, x| > w2, A1
J(@) = 1, |z| <~wl/2. (A.19)

For this case the coefficients Aj and By, can easily be calculated, using the expressions (A.17) and (A.18). The factors By, are all zero, which is
a consequence of the fact that the function f(z) is even, f(—x) = f(x). The factors Ay are equal to zero when k is even, and the uneven terms
are proportional to 1/k. The series (A.16) finally can be written as

1 2 1 3 1 5 1 7
flx) = 5T ;{cos(%) - gcos(Tm) +z cos(Tx) - cos(Tx) +.. } (A.20)
The first term of this series represents the average value of the func-
f(z) tion, the second term causes the main fluctuation, and the remaining
terms together modify this first sinusoidal fluctuation into the block func-
tion.

Figure A.1 shows the approximation of the series (A.20) by its first 40 terms.

It appears that the approximation is reasonably good, except very close to

the discontinuities. This is a well known effect, often referred to as the

; . s Gibbs phenomenon (Weisstein, 1999). The approximation becomes better,
! ' ' of course, when more terms are taken into account, but the overshoot near
[ ! \ the discontinuities remains.

LUV,

M| | v

0 1 2 3 4 5 ml

Figure A.1: Fourier series, 40 terms.
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A.2.2 From Fourier series to Fourier integral

Substitution of (A.17) and (A.18) into (A.16) gives

1 +ml e o] 1 +ml

f(z) = ol ) f@t)dt + ;f(t) ) f(t) cos[k(t —x) /1] dt. (A.21)
The interval can be made very large by writing 1/l = A¢. Then (A.21) becomes
B A€ +m/AE st N +m/AE
flo) =52 ae t)dt + I; Ft)— ae F(t) cos[kAE(t — x)] dt. (A.22)

Writing kA¢ = £ and letting A¢ — 0 this reduces to

oo —+oo
flz) = %/0 dS[ f(t) cos[(x — t)] dt. (A.23)
This can also be written as ) ~
1@) = 5= [ 1A©) costat) + B(©) sin(ae)] . (A2
where 00
€)= 2/7 f(t) cos(&t) dt, (A.25)
and
= 2/ f(t) sin(ét) d (A.26)

It can be seen from (A 25) that A(€) is an even function, A(—¢§) = A(&), and from (A.26) it can be seen that B() is uneven, B(—¢) = —B(¢).
Therefore, if F(£) = $[A(§) +iB(£)], it follows that

/ " F(€) exp(—ix€) de = / TTA©) cos(x€) + B(©) sin(xe)]d, (A.27)

as can be verified by elaborating the functions in the integral on the left hand side. It follows that eq. (A.24) may also be written as

f@) = 5 [ F(©) exp(-ing) de, (A.29)
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where, if the integration variable ¢ is replaced by x,
— [ @) expiat) ds, (A.29)

This is the basic formula of the Fourier transform method. The function F(€) is called the Fourier transform of f(z). It may be mentioned that
the asymmetry of the formulas is often eliminated by writing a factor 1/4/27 in each of the two integrals.

The main property of the Fourier transform appears when considering the Fourier transform of the second derivative d? f /dz?. This is found
to be, using partial integration,

e} 2f
/ —= exp(izg) de = —&* F(y), (A.30)

oo dx?

if it is assumed that f(z) and its derivative df /dz tend towards zero for £ — —oo and £ — oco. Thus, under these conditions, the second
derivative is transformed into multiplication by —¢&2.

When it is known that the function f(x) is even, f(—x) = f(x), one may write

ﬂ@=AwE@aMMM& (A31)

where now

/ f(z) cos(xf) dw (A.32)

The function F.(€) is called the Fourier cosine-transform of f(x)

For uneven functions, f(—x) = —f(z), the Fourier sine-transform may be used,
2 o0
f@) =2 [ R sin) . (A33)
0
where -
§) = / f(z) sin(z€) da. (A.34)
0

Both for the Fourier cosine transform and for the Fourier sine transform various examples are given in the tables published by Churchill (1972)
and Erdélyi et al. (1954).
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A.2.3 Application

As an example consider the problem of potential flow in a half plane y > 0,
see Figure A.2. Along the upper boundary y = 0 the potential is given to be

Y

Figure A.2: Half plane.

z a step function. The differential equation is
P f
— + —= =0, A.35
ox? + Oy? ( )

and the boundary condition is supposed to be

0, |z|>a,
p, |z| < a.

Because the boundary condition (A.36) is symmetric with respect to the y-
axis, it can be expected that the solution will be even, and therefore the
Fourier cosine transform (A.32) may be used. The transformed problem is,
using equation (A.30),

dF.

The solution of this ordinary differential equation that vanishes at infinity is

From this it follows that the value at the surface y = 0 is

The transformed boundary condition is, with (A.36) and (A.32),

From eqgs. (A.39) and (A.40) the integration factor A(§) can be determined,

—E2F, + i 0. (A.37)

Fo = A(£) exp(—£y). (A.38)
y=0: F.=A(). (A.39)
y=0: F.= %p Sinfa). (A.40)
A(g) = 22 sinléa), (A.41)

T £
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The final solution of the transformed problem is

£ 22 gy, (A42)

The solution of the original problem can now be obtained by the inverse transform, (A.31),

f_ 2 [ sinléa) cosir)

=/ G exp(—£&y) d€. (A.43)

Although this integral has been obtained as a Fourier integral, it can actually most easily be found in a table of Laplace transforms, because of
the function exp(—£y) in the integral. In such tables the following integral may be found

/000 siniat) exp(—st)dt = arctan(%). (A.44)

Using this result, and some trigonometric relations to bring the integrand of (A.43) into the correct form to apply (A.44), the final solution of
the problem considered here is found to be

a+x —-x

f= P arctan ( )+ L arctan(a ). (A.45)
™ ™
It can easily be verified that this solution satisfies the differential equation (A.35) and the boundary condition (A.36). Thus the expression

(A.45) is indeed the solution of the problem.
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A.2.4 List of Fourier transforms

In this section a number of Fourier transforms is listed, together with references or indications for their derivation. For some integrals a numerical
verification is shown, using Simpson’s numerical integration scheme. The numerical results confirm the analytical formulas.
In this section the Fourier cosine transform, see (A.32), is defined as

Fo(y) = /000 f(z) cos(zy) dx. (A.46)
The inverse transform is, with (A.31), o
fla) =2 [ Fuw)costan (A7
The Fourier sine transform, see (A.34), is defined as
Fi(y) = /000 f(z) sin(xy) dz. (A.48)
The inverse transform is, with (A.33), .
fa)=2 / Fy(y) sin(ay) dy. (A.49)

It may be noted that in some publications the definitions (A.46) and (A.48) contain a factor y/2/7. The inverse transforms then also contain
this factor, so that the pair of transforms becomes symmetric. This is especially valuable when constructing a table of transforms.

A well known integral of the Laplace transform type (Churchill, 1972) is, when formulated as a Fourier cosine transform,

& t
—uxt dr = . A.50
/0 exp(—at) cos(zy) dx R ( )
Using the inversion theorem (A.47) it follows that
< 1 ™
= cos(zy) dx = % exp(—yt). (A.51)

Differentiation of (A.51) with respect to t gives

o 1 T
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Another well known integral of the Laplace transform type (Churchill, 1972) is, when formulated as a Fourier sine transform,

—xt dx = . A.53
/0 exp(—at) sin(zy) dz R ( )
The inverse form of this integral is, with (A.49),
/0 %W sin(xy) de = g exp(—yt). (A.54)
Differentiation of (A.54) with respect to ¢ gives
4.0 T - -
/0 (CETIE sin(zy) de = yry exp(—yt). (A.55)
Differentiation of (A.53) with respect to y gives
3.0
o p t2 _ y2 A 6
F —at 5 = . .5
) | en(eat) costen o = ot (A56)
2.0 Differentiation of (A.53) with respect to t gives
o 2yt
x exp(—at) sin(zy) dr = —5———. (A.57)
1.0 /o (y? + %)
A well known discontinuous integral is (Titchmarsh, 1948, p. 177)
0.0 /00 sin(wt) cos(zy) dx = %’ y<t (A.58)
0.0 1.0 2.0 3.0 4.0 . - Y 0, y>t :

Y
) - . A numerical verification of the integral (A.58) is shown in Figure A.3. The analytical
Figure A.3: F(y) = J;" [sin(z)/z] cos(xy)dz. results, as given by (A.58), are indicated by the fully drawn lines. Some numerical results,
calculated using Simpson’s integration formula, are indicated by the dots.
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4.0 An integral similar to (A.58) is (Titchmarsh, 1948, p. 179)
*° sin(wt t
/ sin(wt) sin(zy) dz = 3 lo g’ + y‘ , (A.59)
3.0 0 ff -y
F(y) A comparison with the results of a numerical computation of this inte-
Y gral is shown in Figure A.4. Again the analytical indicated
2.0 . by the fully drawn lines, and the numerical indicated by the
/’ \ dots.
10 / \ Some integrals of the Weber-Schafheitlin type (Watson, 1966, p.405) are
\\,M (%) ) O, Y < t7
retesrenees / Jo(xt) sin(xy) dx = 2212 . (A.60)
0.0 (y )Ty >t
0.0 1.0 2.0 3.0 4.0
12— y2)-1/2, <t
Yy / ) cos(zy) dx = ( V) Y (A.61)
oo 0 0, y > t.
Figure A.4: F(y) = [, [sin(z)/z] sin(zy)dz.
< Jo( arcsin(y/t), <t,
/ o sm (zy) dx = L W/, v (A.62)
0 5 y > t.
It may be noted that eq. (A.61) may be derived from (A.62) by differentiation with respect to the parameter y.
Differentiating equation (A.62) with respect to t gives
> (2 —y?)72, oy <t
/ Ji(zt) sin(zy) de = W/t v’) Y (A.63)
0 0, y >t
Finally, another useful Weber-Schafheitlin integral is (Watson, 1966, p. 405)
- % y<t
/0 J1(zt) cos(zy) dx = t >t (A.64)

*W(wm)’
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A.3 Hankel transforms

A.3.1 Definitions

For problems with radial symmetry a useful solution method is provided by the Hankel transform. This transform is defined by

F(y) = /Ooowf(w) Jo(zy) dx. (A.65)
The inverse transform is -

f@) = [ v P doay) dy (A.66)
For a derivation of this relation the reader is referred to the literature, see e.g. Sneddon (1951).

The main property of the Hankel transform is that it transforms the operator often appearing in radially symmetric problems into a simple
multiplication,

< d*f 1df
— 4+ ——|z J de =—y* F A.67
|G+ e hen do =~ ). (A.67
This property can be derived by using partial integration, and noting that the Bessel function w = Jy(zy) satisfies the differential equation
d? 1d
R ) (A.68)

dz?  xdx
Thus the combination d?f/dz? + (1/z)df /dx is transformed into multiplication of the Hankel transform F(y) by —y?. This means that a
differential equation in which this combination of derivatives appears may be transformed into an algebraic equation. In many cases this
algebraic equation is relatively simple to solve, but the problem then remains to find the inverse transform. For the inverse transformation tables
of transforms may be consulted, but if the tables do not give the inverse transform, it may be a formidable mathematical problem to derive it.

A.3.2 List of Hankel transforms

In this section a number of Hankel transforms is listed, together with references or indications for their derivation. For some integrals a numerical
verification is shown, using Simpson’s numerical integration scheme. The numerical results confirm the analytical formulas.

A pair of integrals of the Weber-Schafheitlin type is (Abramowitz & Stegun, 1964, 11.4.33, 11.4.34)

2
Y
zE(th), y<ta

/ A L (A.69)
0 t

v —{E% (1—?)[((;—2)}, y>t.
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In these equations the functions K(x) and E(z) are complete elliptic integrals of the first and second kind, respectively. A short list of values

0.0 | 1.57079 | 1.57079
0.1 | 1.61244 | 1.53076
0.2 | 1.65962 | 1.48903
0.3 | 1.71389 | 1.44536
0.4 | 1.77751 | 1.39939
0.5 | 1.85407 | 1.35064
0.6 | 1.94956 | 1.29842
0.7 | 2.07536 | 1.24167
0.8 | 2.25720 | 1.17848
0.9 | 2.57809 | 1.10477
1.0 00 1.00000

Table A.2: Complete Elliptic integrals.

of these functions, adapted from Abramowitz & Stegun (1964) is given in table A.2.

Two well known integrals of the Hankel transform type are (Sneddon, 1951, p. 528)

00 T 1
/0 @ e Jo(zy) do = " exp(—yt). (A.70)
oo T 1
/0 @ TP Jo(zy) dz = 5 exp(—yt). (A.71)

Differentiation of (A.71) with respect to ¢ gives

> T 1+ yt
/0 RO Jo(zy) da = exp(—yt). (A.72)



Arnold Verruijt, Soil Dynamics : A. INTEGRAL TRANSFORMS 404

Differentiating this again with respect to ¢ gives

e x 3+ 3yt + (yt)?
/0 @21 )72 Jo(wy) do = —— 5= exp(~yt). (A.73)

The inverse form of (A.71) is

> t
A exp(—xt) € J(] (ﬁy) dx = W. (A.74)
This integral can also be considered as a Laplace transform.
Integration of the integral (A.74) with respect to ¢ gives
4.0
> 1
3.0 Equation (A.75) is the inverse form of (A.70). It is a well known integral, which can also
F(y) be considered as a Laplace transform, and can be found in many tables (see e.g. Churchill,
1972, p. 327).
2.0 A comparison of analytical and numerical computations of the integral (A.75) is shown
in Figure A.5.
1.0 The Fourier transforms (A.60) — (A.64) can also be considered as Hankel transforms.
&\*“*‘« Written in the form of Hankel transforms these integrals are as follows.
M
00 $0-00000000q o0 ) . J d (t2_y2)71/27 y<t, A76
0.0 1.0 2.0 3.0 4.0 /0 sin(xt) Jo(zy) do = 0, >t (A.76)
Y
Figure A5: Fly) = [ exp(—2)o(ay)d [ costat) doan)a o Tt (A7
igure A.5: = exp(—x)Jo(zy)dz. cos(z xy)dx = .
g Y 0 0 o o\ryY <y2_t2)—1/2’ y>t
. 1
o0 t 5T, < t,
/ S J () do = 2 Y (A.78)
0 x arcsin(t/y), y > t.

/ ™ sin(at) Jy () do = { 0 y<t (A.79)
0 t/y) (> — )72, y>t.
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oo 2 ; 2.2\ <h
/ cos(xt) Ji(zy) dx = -y (t1+ -y ) (A.80)
0 1
U y > t.
3.0
2.0
F(y)
1.0
'
J
0.0
W
ekl
—-1.0
0.0 1.0 2.0 3.0 4.0

)
Figure A.6: F(y) = — [, cos(x)J1(zy)dz.

A numerical verification of the integral (A.80) is shown in Figure A.6.
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A.4 De Hoop’s inversion method

A.4.1 Introduction

An elegant method to determine the inverse Laplace-Fourier transform for certain problems was developed by De Hoop (1970). In this method
the Laplace transform and the Fourier transform are used, and the integration path for the inverse Fourier transform is modified in such a way
that the two inverse transforms can be traded off. Actually, the inverse Fourier integral is transformed so that it obtains the form of a Laplace
transform. The inverse Laplace transform then simply is the function itself. The method is particularly useful for the solution of problems of
elastodynamics. It will be illustrated here by an example of general dynamics. Many references to other applications are given by Duffy (1994).

A.4.2 Example

As an example consider a problem of dynamics for a half plane, see Fig-
ure A.7, defined by the partial differential equation
x
0? 0? 02
—“’zc?{—“’ —“’} (A.81)
ot? 0x2  Oy?
where c is a given constant (the wave velocity), defined by ¢? = p/p, where
w is the elasticity of the material, and p its density. The differential equation
(A.81) is a basic equation of acoustics (Morse & Ingard, 1968).
It is assumed that the boundary condition at the upper boundary y = 0
describes a line impulse,
Y ow

y=0 : p— = —Pi(z)d(t), (A.82)
Figure A.7: Half plane with impulse load. 9y

where P denotes the strength of the impulse, and p is the elasticity of the
medium.

Solution by Laplace and Fourier transforms

The Laplace transform of the variable w is defined as

w = /00 w exp(—st) dt. (A.83)
0
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If it is assumed that at time ¢ = 0 the system is at rest, the differential equation (A.81) is transformed into
0?w  O*w 9 ) on
Fr) + £ = (s7/c)w. (A.84)
The Fourier transform of the function w is defined, using equation (A.29), as
W= / w exp(izf) dx. (A.85)
Using the property (A.30) the differential equation (A.84) is further transformed into
—
OW _(52/c2 4 )W, (A.86)
Oy?
For mathematical convenience the parameter £ is written as £ = sa. This gives
W 212777
oy = s°k*W, (A.87)
where
kK =1/ + o> (A.88)
It may be noted that the inverse Fourier transform is, with equation (A.28),
1 < __
W= 7/ W exp(—iz€) de, (A.89)
2 J_ o
or, with £ = sa,
w = i/ W exp(—isazx) da. (A.90)
27 J_ oo
The general solution of the ordinary differential equation (A.87) is, assuming that the solution should vanish for y — oo,
W = A exp(—sky), (A.91)

The integration constant A must be determined from the boundary condition at the surface y = 0.



Arnold Verruijt, Soil Dynamics : A. INTEGRAL TRANSFORMS 408

The Laplace transform of the boundary condition (A.82) is
ow

=0: p—=-Po A.92
y=0: g =—P) (4.9
and the Fourier transform of this condition is, using (A.85),
ow
=0: uy——=-P. A.93
y "By (A.93)
It follows from equations (A.91) and (A.93) that
P
A=—. A.94
ok (A.94)
Substitution of this result in the general solution (A.91) gives
W= L exp(—sky) (A.95)
= — exp(— . .
ok Pk

Inverse Fourier transformation using equation (A.90) gives
P (% exp|—s(iaz + ky)]
2 ) _ o k

where k is defined by equation (A.88), i.e. k% =1/c® + o>

w =

da. (A.96)

Inverse transform

The remaining mathematical problem is to evaluate the integral (A.96), and then to determine the inverse Laplace transform. In general this
may be a formidable problem.

An elegant way to determine the inverse transforms was developed by De Hoop (1960). In this method the integration variable « is first
replaced by p = ic. The integral (A.96) then becomes

P ioo exp[—s(pz + ky)]
2mip k

dp, (A.97)

w =
—100

where now the parameter k can be expressed, with (A.88), into p as
kK =1/ —p. (A.98)

The integrand of the integral is continued analytically in the complex p-plane, see Figure A.8.
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S(p) Two branch cuts are necessary, from the branch points at p = +1/¢ to
infinity. It is most convenient to let the branch cuts follow the real axis, as
shown in the figure.

p1 The integration path in the complex p-plane now is modified to a curved
path, also indicated in Figure A.8. It is assumed that along this curved path
a parameter t can be defined so that

—1/cs 1/cs t=pr+ky. (A.99)
It is assumed that t is a real and positive parameter. It will later be identified

with the time.
It follows from equations (A.98) and (A.99) that

P2 k* =1/c — p* = (t* — 2tpx + p*2?) /y>. (A.100)
or
r2p? — 2tap +t2 — y?/c? =0, (A.101)
Figure A.8: Integration path in the complex p-plane. where
r? = a2 42 (A.102)
Equation (A.101) is a quadratic equation in p, with two solutions,
_lr W o5 _tr W s
n=5+3 12 —r2/c?, P2="5"73 2 —r2/c2. (A.103)

It is assumed that along the two parts of the integration path the variable ¢ varies between the limits
r/c<t< oo. (A.104)

It follows that on the upper half of the curve in Figure A.8 (indicated by p;) the value of p varies from the real value p = x/re, if t = r/c, to
a complex value p = (x + iy)t/r?, if t — oo. The point p = x/rc is always located between the origin and the branch point p = 1/¢, if x > 0,
which will be assumed here.

It now remains to express the integral (A.97) in terms of the new variable ¢. For this purpose it may first be noted from the expressions

(A.103) that

d ] t d ' t
@ _ T W r _r Wt (A.105)

R R R ey M R TR B ey



Arnold Verruijt, Soil Dynamics : A. INTEGRAL TRANSFORMS 410

Furthermore, it follows from equation (A.99) that k = t/y — px/y. This gives, with (A.103),

ty i ty i
k=2 T e key = 7% + 2 /e, (A.106)

r2 r2 r2
or

1k ; t ik ; t
bz i ke ozt (A.107

/2 — r2/c2 - r2 o2 /12 — 7"2/(:27 /2 — 7"2/02 - r2  r?2 2 _ TQ/CQ'

It now follows from (A.105) and (A.107) that

1 d } 1d )
o — (R — (A.108)

kyodt \/752—7“2/027 ko dt 1/752_7a2/02'
Substitution into the integral (A.97) now gives, noting that this consists of two branches p; and ps, with the integration path on p; from ¢t = r/c
to t = 0o, and on py from ¢t = co to t =1/c,

dt. (A.109)

This can also be written as
exp(—st) dt, (A.110)

where H(t —r/c) is Heaviside’s unit step function.
Equation (A.110) has precisely the form of a Laplace transform. It can be concluded that the original function w is
P H(t—r/c)

w=— 2279 (A.111)
T 2 77/.2/02

This completes the solution of the problem. It may be noted that it has been determined without using any explicit form of an inverse Fourier
transform formula, or an inverse Laplace transform formula. Actually, the inverse Fourier transform has been modified into a Laplace transform,
and the inverse Laplace transform of a Laplace transform is just the original function itself.



Appendix B

DUAL INTEGRAL EQUATIONS

This appendix gives a general procedure for the solution of a system of dual integral equations, as developed by Sneddon (1966).

The system of equations is supposed to be

/ T ROA©) I de = f(r),  0<r<a,

/0 " eA(E) Jo(re) de = 0, r>a,

where the functions F(§) and f(r) are given in their domain of definition, and A(§) is unknown.
The function A(€) is represented by a finite Fourier transform

A = [ ot cosiet ar

Using partial integration this can also be written as

49 = o™ - [Tow™ a

3 3
Using the integral (A.76),
/ sin(€t)Jo(€r) dE =0, 1>,
0

it follows that equation (B.2) is automatically satisfied.
We now use the integral
5 T _ sin(és)
|, e ===,

which is the inverse form of the integral (A.76), when this is considered as the Hankel transform of the function sin(&t)/€.

411

(B.3)

(B.4)

(B.5)

(B.6)
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Application of the operation defined by eq. (B.6) to eq. (B.1) gives
| roao™Ede—ne,  o<s<a (B.7)
where .
h(s) = /0 (3273652))1/2 dr. (B.8)
Substitution of (B.3) into (B.7) gives
/Oagb(t){/oooF(E)de} dt =h(s), 0<s<a, (B.9)
A well known Fourier cosine transform is (Titchmarsh, 1948, p. 177)
0o s yis
[ (5 1<
It now follows that (B.9) can be written as
g/o (t) dt + /ans(t) {/OOO[F(g) —1] W dg} dt = h(s), 0< s < a. (B.11)
Differentiation with respect to s leads to the Fredholm integral equation
o(s) + /Oa K(t,s)p(t)dt = H(s), 0<s<a. (B.12)
where K (t,s) is the kernel function
K(t,s) = 7?_/UOO[F(f) — 1] cos(&s) cos(&t) dE, (B.13)
and H(s) is the given function .
H(s) = %h’(s) - %d% i (SQT_fEf;))W dr. (B.14)

The problem has now been reduced to the solution of the Fredholm integral equation (B.12). If this can be solved, the unknown function A(&)
can be determined using equation (B.3). It may be noted that in the special case that F(£) = 1, the kernel function vanishes, and the integral

equation (B.12) reduces to the explicit solution ¢(s) = H(s).



Appendix C

BATEMAN-PEKERIS THEOREM

This appendix presents the Bateman-Pekeris theorem (Bateman & Pekeris, 1945), which is used in Chapter 13.

The theorem is

| s o) s ==23 [y slin) Kolow) o (1)
0 0
where p > 0, and f(z) is an analytic function of z in the half plane R(z) > 0, such that f(z) is real if 2 is real, and satisfies the condition

lim 2*2f(z) =0, (R(z)>0). (C.2)

In order to prove this theorem the basic integral is written as

Np)= [ o f(e) Jope) da. (3
0
The Bessel function Jy(z) can be written as the sum of two Hankel functions (Abramowitz & Stegun [1964], eq. 9.1.3 and 9.1.4),
1
Jo(2) = 3Hg" () + $ H” (=), (C.4)

so that the integral N(p) can be decomposed into two parts

N(p) = Ni(p) + Na(p), (5)

where
M) =4 [ f@) ) do (C6)

and
Nat) =} [ fa) HE o) 1)



Arnold Verruijt, Soil Dynamics : C. BATEMAN-PEKERIS THEOREM 414

0 1~ *z)

Figure C.1: Quarter plane R(z) > 0,3(z) > 0.

The integral Ny (p) will be considered first. Because the function f(z), by assumption, is analytic in the half plane $(z) > 0, and Hél)(z) is an

analytic function of z in the entire plane except at infinity, the function z f(2) H(()l) (pz) is analytic in the quarter plane R(z) > 0,3(z) > 0. This
means that the integral along the contour OABCO in Figure C.1 is zero,

]{z f(z) H(()l)(pz) dz =0, (C.8)

for every value of the radius R.
It can be shown that the integral over the arc AB tends towards zero for large values of the radius R. For this purpose it may be noted that

the asymptotic behaviour of the function Hél)(z) is (Abramowitz & Stegun [1964], eq. 9.2.3)

H(gl)(z) ~ (%)1/2 exp(icz —y — %iw), (-7 < arg(z) < 2m). (C.9)

Along the arc AB the Bessel function is Hél)(pz) ~ (2/7Rp)'/2. The integral of the function z f(z) Hél)(pz) along the arc AB is, approximately,

2

g = /A 2 fE) P (02) dz ~ RAA) (s

WRp)l/QRa. (C.10)
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Because of the condition (C.2) this will tend towards zero if R — oo.
Along the arc BC the integral will also tend towards zero, because there the integral can be overestimated by

17 R? f(Rexp(ip))( ]2% )12 exp(—aRp). (C.11)

TP
For R — oo this will certainly tend towards zero, because of the exponential factor,

Jim Tpe =0. (C.12)

Because the contour integral is zero, see (C.8), and the integral along the arc AC is zero, it follows, with (C.6), that

Nalw) =4 [ v Gio) B i) d. (C13)

0
The Hankel function of imaginary argument can be expressed into the modified Bessel function Ky(z) (Abramowitz & Stegun [1964], eq. 9.6.4),
Koly) = gim Hg" (iy). (C.14)

so that the final expression for the integral N;(p) is

Ni(p) = - /O "y i) Kolpy) dy. (C.15)

In a similar way the integral Na(p) can be transformed into an integral along the imaginary axis. Because at infinity the behaviour of the
function H(gQ)(z) is different from that of H(()l)(z), however,

2
HP (2) ~ (E)I/Q exp(—iz +y + Lim), (=27 <arg(z) <), (C.16)

the contour must now be closed by a quarter circle in the lower right half plane. This will give

Natp) = 4 | "y F (i) B (Cipy) dy. (€17)

Again this can be expressed into the modified Bessel function Ky(z), using the formula (Abramowitz & Stegun [1964], eq. 9.6.4),

Ko(y) = —gim Hy? (~iy). (C.18)
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The final expression for the integral No(p) is

T e .
Nalp) ==+ [y f(-iv) Kolow) d (C.19)
0
Because the function f(z) is real along the real axis, it follows from the reflection principle (Titchmarsh [1948], p. 155) that
f(=iy) = f(iy). (C.20)
Thus it follows that
Na(p) = Ni(p). (C.21)
With (C.5) and (C.15) it now follows that
2 > )
Nw)= -2 [y st) Kolow) . (C22)
0

This proves the theorem.
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