ENVIRONMENTAL GEOTECHNICS

NATURAL AND ARTIFICIAL SLOPES and
GENERAL SLOPE STABILITY CONCEPTS

Prof. Ing. Marco Favaretti

Universita di Padova Facolta di Ingegneria
Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica (I.M.A.GE.)
Via Ognissanti, 39 — 35129 - Italia
Tel: +39.049.827.7901 Fax: +39.049.827.7988

E-Mail: marco.favaretti@unipd.it



Definition of LANDSLIDE

The downward falling or sliding of a mass of soil, detritus, or rock on or

from a steep slope.

Introduction to SLOPE STABILITY

Slope stability problems have been faced throughout history when men
and women or nature has disrupted the delicate balance of natural soil

slopes.

Need to understand analytical methods, investigative tools, and

stabilization methods to solve slope stability problems.



AIMS OF SLOPE STABILITY ANALYSIS

The primary purpose of slope stability analysis is to contribute to the safe
and economic design of excavations, embankments, earth dams, landfills,

and spoil heaps.

The aims of slope stability analyses are:

(1) To understand the development and form of natural slopes and the

processes responsible for different natural features.

(2) To assess the stability of slopes under short-term (often during

construction) and long-term conditions.



AIMS OF SLOPE STABILITY ANALYSIS

(3) To assess the possibility of landslides involving natural or existing

engineered slopes.

(4) To analyze landslides and to understand failure mechanisms and the

influence of environmental factors.

(5) To enable the redesign of failed slopes and the planning and design of

preventive and remedial measures, where necessary.

(6) To study the effect of seismic loadings on slopes and embankments.



NATURAL AND ARTIFICIALS SLOPES

The analysis of slopes takes into account a variety of factors relating to
topography, geology, and material properties, often relating to whether the

slope was naturally formed or engineered.

Natural slopes that have been stable for many years may suddenly fail
because of changes in topography, seismicity, groundwater flows, loss of
strength, stress changes, and weathering.

Significant uncertainty exists about the stability of a natural slope.



NATURAL AND ARTIFICIALS SLOPES

Knowing that old slip surfaces exist in a natural slope makes it easier to
understand and predict the slope’s behavior. The shearing strength along
these slip surfaces is often very low because prior movement has caused

slide resistance to peak and gradually reduce to residual values.

Engineered slopes may be considered in three main categories:
embankments, cut slopes, and retaining walls. As these slopes are man-

made less uncertainty exists about their stability.



MODES OF FAILURE

Slope failures are usually due either to a sudden or gradual loss of
strength by the soil or to a change in geometric conditions, for

example, steepening of an existing slope.
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MODES OF FAILURE

Typical slides that can be expected to occur in soil slopes:
(1) Falls (free fall, topple)

(2) Slides

2a. Planar or translational

2b. Rotational or slump

2c. Block or wedge slides

2d. Lateral spreading

2e. Debris slide

Flows

Creep
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Compound slides (combination of previous types)



MODES OF FAILURE

A CLASSIFICATION OF SLOPE FAILURES
Type Form Definition
Free fall Sudden dislodgement of single or multiple blocks of seil or rock which
fall in free descent.
Falls
Tobole Overturning of a rock block about a pivot point located below its center
PP of gravity.
Relatively slow movement of an essentially coherent block (or blocks) of
Rotational or slump soils, rock, or soil-rock mixtures along some well-defined arc-shaped
failure surface.
Planar or translational Slow to rapid movement of an essentially coherent block (or blocks) of
soil or rock along some well-defined planar failure surface.
Slides Block slide A single block moving along a planar surface.
Wedge slide Block or blocks moving along intersecting planar surfaces.
Lateral soreadin A number of intact blocks moving as separate units with differing
P g displacements.
Debris slide Soil-rock mixtures moving along a planar rock surface.
Debris
Sand Soil or rock-scil debris moving as a viscous fluid or slurry. Usually
Flows Silt terminating at distances far beyond the failure zone; resulting from
Mud excessive pore pressures.
Soil
Creep Slow, imperceptible downslope movement of soil or soil-rock mixtures.
Complex Inveolves combinations of the above, usually occurring as a change from
P one form to another during failure with one form predominant.
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Rotational Slide

Usually occurs in
slopes consisting of
homogeneous

materials

Translational Slide

Usually occurs in
shallow soils
overlying relatively
stronger materials
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Lateral spreading & Debris flow

Lateral Spreading Failure

/ o -t imesins Lateral spreading
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Tilted structures

Debris flow
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MODES OF FAILURE

As most soils are generally heterogeneous, noncircular surfaces,

consisting of a combination of planar and curved sections, are most likely.

Often, retrogressive failures
consisting of multiple curved
surfaces can occur in layered

soils. Such failures are typical

where the first slip tends to

oversteepen the slope, which

then leads to additional failures.

Such failures are typical where the first slip tends to oversteepen the

slope, which then leads to additional failures.
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MODES OF FAILURE

Geologic Factors Controlling Shape of Potential Failure Surface

Potential Failure
Geologic Conditions

Surface
Cohesionless soils
Residual or colluvial soils over shallow rock Translational with small
Stiff fissured clays and marine shales within the upper, depth/length ratio

highly weathered zone

Sliding block

Interbedded dipping rock or sail
Single planar surface
Faulted or slickensided material

intact stiff to hard cohesive soii on steep siopes

Sliding blocks in rocky masses

Weathered interbedded sedimentary rocks
Clay shales and stiff fissured clays Multiple planar surfaces
Stratified soils

Sidehill fills over colluvium

Thick residual and colluvial soil layers

Soft marine clays and shales Circular or cylindrical shape

Soft to firm cohesive soils




CASE HISTORIES (1)

Toppling failure

Planar Sliding
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CASE HISTORIES (2)

Lateral spreading

Tully Valley Landslide,

Phoenix, New York, 1993
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CASE HISTORIES (3)

Cones of dejection and screes at

the feet of Canadian Rockies
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CASE HISTORIES (4)

S. Salvador, El Salvador, 2001

Debris Flow
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CASE HISTORIES (5)

Creep

The roots of trees are
embedded in the stable soill,
while the trunks follow the
downward slow movement

of the superficial cover.
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CASE HISTORIES (6)

Rotational landslide

with debris-flow

La Conchita, California, 1995
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CASE HISTORIES (7)

Fort St. John, Alberta,
Canada, 2001

Roto-traslational

landslide

Young River Landslide, Canada
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FACTORS INFLUENCING SLOPE STABILITY

The main items required to evaluate the stability of a slope are:
(1) Shear strength of the soils

(2) Slope geometry

(3) Pore pressures or seepage forces

(4)

4) Loading and environmental conditions

(1) The shear strengths should be provided as undrained strength, s,, or
the more typical Mohr-Coulomb parameters, ¢ and ¢.

(2) The slope geometry may be known for existing, natural slopes or may
be a design parameter for embankments and cut slopes.

(3) A major contributor to many slope failures is the change in effective
stress caused by pore water pressures. These tend to alter the shear

strength of the soil along the shear zone .



FACTOR OF SAFETY (FOS) CONCEPTS

Function of the FOS: to account for uncertainty, and thus to guard against

ignorance about the reliability of the items that enter into the analysis,

such as, strength parameters, pore pressure distribution, and stratigraphy.

The lower the quality of the site investigation, the higher the desired FOS

should be.

The FOS used in design will vary with material type and performance

requirements.

The required FOSs (nonseismic) are usually in the 1.25 to 1.5 range.
Higher factors may be required if there is a high risk of loss of life or
uncertainty regarding the pertinent design parameters. Likewise, lower
FOSs may be used if the engineer is confident of the accuracy of input

data and if the construction is being monitored closely.
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FACTOR OF SAFETY— First Definition

In most limit equilibrium analyses, the shear strength required along a
potential failure surface to just maintain stability is calculated and then
compared to the magnitude of available shear strength. In this case the

FOS is assumed to be constant for the entire failure surface.

This average FOS will be given by the ratio of available to required shear

strength:
Sy
Treq = ? for total stresses
T _ C + c-tan¢ for effective stresses
9 F F
c ¢
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FACTOR OF SAFETY— First Definition

The adoption of F; and F, allows different proportions of the cohesive (c’)
and frictional (¢') components of strength to be mobilized along the failure

surface.

However, most limit equilibrium methods assume F; and F, , implying that
the same proportion of the ¢’ and ¢ components are mobilized at the

same time along the shear failure surface.
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FACTOR OF SAFETY— Second Definition

Another definition of FOS often considered is the ratio of total resisting
forces to total disturbing (or driving) forces for planar failure surfaces or
the ratio of total resisting to disturbing moments, as in the case for circular

slip surfaces.

Realize that these different values of the FOS obtained using the three
methods, that is, mobilized strength, ratio of forces, or ratio of moments, will

not give identical values for ¢ — ¢ soils.
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FACTOR OF SAFETY

Sy

A Trequired
LIMIT EQUILIBRIUM FOS = ¢’ +o'tang’ ( Effective Stress )
_ Trequired
_%
) R\ Summation of resisting force
FORCES FOS = - —
Summation of mobilized force
Radius, R L—x—-]\
Ci_mular
w Slip plane
* Resistin et R Jsuds
== FOS = esisting momen _
Overtuming moment W x
MOMENTS ' '

First definition

Second definition
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PORE WATER PRESSURES

If an effective stress analysis is to be performed, pore water pressures will

have to be estimated at relevant locations in the slope. These pore
pressures are usually estimated from groundwater conditions that may be

specified by one of the following methods:

(1) Phreatic Surface: This surface, or line in two dimensions, is defined by
the free groundwater level. Delineated, in the field, by using open
standpipes as monitoring wells.

(2) Piezometric Data: Specification of pore pressures at discrete points,
within the slope, and use of an interpolation scheme to estimate the
required pore water pressures at any location. Determined from field
piezometers, a manually prepared flow net or a numerical solution using

finite differences or finite elements.



PORE WATER PRESSURES - r

(3) Pore Water Pressure Ratio: This is a popular and simple method for

normalizing pore water pressures measured in a slope according to the

definition:

u
ru = —
Oy
where u i

pressure and the total vertical stress at the same depth.

This factor is easily implemented, but the major difficulty is associated with
the assignment of the parameter to different parts of the slope.
It is usually reserved for estimating the FOS value from slope stability

charts or for assessing the stability of a single surface.
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PORE WATER PRESSURES

(4) Piezometric Surface: This surface is defined for the analysis of a

unique, single failure surface. This approach is often used for the back

analysis of failed slopes.

Note that a piezometric surface is not the same as a phreatic surface, as

the calculated pore water pressures will be different for the two cases.

(5) Constant Pore Water Pressure: This approach may be used if the
engineer wishes to specify a constant pore water pressure in any particular

soil layer.
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PORE WATER PRESSURES — Phreatic surface

If a phreatic surface is defined, the pore water pressures are calculated for

the steady-state seepage conditions.

PHREATIC
SURFACE

| F

PORE WATER
PRESSURE HEAD
Y (hycos28)

TYPICAL SLICE

EQUIPOTENTIAL LINE

This concept is based on the assumption that all equipotential lines are
straight and perpendicular to the segment of the phreatic surface passing

through a slice-element in the slope.
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PORE WATER PRESSURES — Phreatic surface

Thus if the inclination of the phreatic surface segment is 6, and the vertical

distance between the base of the slice and the phreatic surface is h, the

pore pressure is given by:

U="7yy -(hw .cos? 9)

.D
This is a reasonable assumption for a Tyical Slice q . 0
sloping straight-line phreatic surface, but '_
will provide higher or lower estimates of o /\// hy
pore water pressure for a curved A/ '\“\. \ |
(convex) phreatic surface. o Lines \Ts\x\'\\Eqmpotem,

Lines

AB - Actual Phreatic Surface

CD - Assumed Inclination of Phreatic
Surface within Slice
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PORE WATER PRESSURES — Piezometric surface

Note that the vertical distance (elevational head) is taken to represent the

pressure.
TYPICAL SLICE
PIEZOMETRIC
| .~ SURFACE
PORE WATER
T PRESSURE HEAD
~" | ()
w

There are some computer programs that oversimplify the analysis by
misinterpreting a phreatic surface as a piezometric surface. With this
erroneous assumption, the overestimated pore pressure head is incorrectly
taken as the vertical distance between the phreatic surface and base of

slice. .



Negative Pore Pressures

There may be cases where an engineer wishes to use negative pore

pressures to take advantage of the apparent cohesive strength available
due to suction within the soil in the slope.

The influence of suction should be included by increasing the total cohesion
according to the measured values of matric suction within the slope.

In some cases, actual negative pore pressures have been used in slope
analysis to increase the shear strength of the soil.

This method is not recommended, as it only affects the frictional component

via the (o — u) tan ¢ term and may not generate reliable values of strength.
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LIMIT EQUILIBRIUM METHOD — L.E.M.

There are numerous methods currently available for performing slope
stability analyses. The majority of these may be categorized as limit

equilibrium methods.

All the procedures currently used are based on the L.E.M. and have the

following assumptions in common:

« Coulomb’s failure criterion is satisfied along the assumed failure
surface, which may be a straight line, circular arc, logarithmic spiral, or
other irregular surface.

* Plain strain conditions are supposed.

 The actual strength of the soil is compared with the value required for
the equilibrium of the soil mass and this ratio is a measure of the safety

factor.
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LIMIT EQUILIBRIUM METHOD — L.E.M.

In this method soils are treated as rigid-plastic materials and due to this
assumption the analysis does not consider deformations. Therefore, this

method allows to only condition at the onset of failure.

These methods are very similar to the kinematic approach, but frequently

the restrictions of a kinematically admissible mechanisms are ignored.

Limit Equilibrium Methods can be subdivided in two principal categories:

 Methods that consider only the whole free body (Culmann method,
friction circle method).

* Methods that divide the free body into many vertical slices and consider

equilibrium of each slide (method of slices).
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LIMIT EQUILIBRIUM METHOD — L.E.M.

Failure

Method Assumptions Author
surface T
- Infinite slope Constant slope angle, infinite extension Taylor (1948)
anar
Culmann Planar failure surface intercepting the foot of the slope Culmann (1966)
. . Hoek-Bray (1981)
Intersected Wedge or wedges Single block or sliding blocks NAVFAC (1982)
Planes Wedges Method Lateral forces acting on sides of each slice are equal Fellenius (1936)
Direction of the resultant of the normal and frictional component
Friction Circle of strength mobilized along the failure surface is tangent to a Taylor (1948)
concentric circle of radius Rf= R sin ¢n
Circular Arc Bishop System of forces acting on lateral interslice surfaces Bishop (1955)
Modified Bishop Simplified system of forces acting on lateral interslice surfaces Bishop (1955)
Spencer Interslice forces are considered parallel Spencer (1967, 1981)
Morgenstern-Price Use of general equilibrium equations Morgenstern-Price (1965)
Irregular

Janbu

Consider interslice forces

Janbu (1954)
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INFINITE SLOPE ANALYSIS

The most simple way to analyze slope stability.

It is used when:
A slope extends for a relatively long distance and has a consistent

subsaoil profile.

The failure plane is parallel to the surface of the slope and the limit

equilibrium method can be applied readily.

Infinite slopes can be studied under several configurations:

* Infinite slope in dry sand.

» Infinite slope in ¢ — ¢ soil with seepage: seepage parallel to the slope.

» Infinite slope in ¢ — ¢ soil with seepage: horizontal seepage (i.e. rapid

dewatering of canals).
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INFINITE SLOPE ANALYSIS — Dry Soil

Dry Soil
Interslice tensions on the Slope Surface ..__.|A
lateral sides of each element / S

h
are equal, so the soil mass W w. b L w

. - _ 77 N\ 5
moves like a continuum. Wyﬂ -
72

The normal (W.) and driving (W,)) //’< J \" FORCE POLYGON
forces are determined:
Failure Surface

Wi=WcosB=ybh1cosp

W,=WsinB=ybh1sin where B is the constant inclination of the slope
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INFINITE SLOPE ANALYSIS — Dry Soil

The available frictional strength along the failure plane will depend on ¢
and is given by

S=c' bsecp+Ntan ¢ =c bsecp +W.tan ¢

If we consider the FOS as the ratio of available strength to strength

required to maintain stability (limit equilibrium), the FOS will be given by

S c'b-secf+N-tan¢’ c'b-secf+W . cosp-tan¢’
W, W -sinf3 W .sinf

FOS =

If we assume ¢’ = 0, FOS will be:

tan ¢
tan3

FOS =

40



INFINITE SLOPE ANALYSIS — Soil with seepage

Seepage parallel to the slope

If a saturated slope, in cohesive c - ¢
soil, has seepage parallel to the
slope surface the same Ilimit

equilibrium concepts may be applied

+nrminn "‘I’\

+ A CNCa hirnh ill
(O geiermine the ruo, wnicn Wwii

now depend on the effective normal

force (N).

The total and effective weight of the slice, in this case, are respectively

given by:
W=y, ,bh1 and

-

Slope Surface

Failure Surface

W' = (ye - ) b 1=y b h 1




INFINITE SLOPE ANALYSIS — Soil with seepage

The effective normal force N’ is given by: N'=N-U

where N is the total normal force and U the pore water force acting on the

base of the slice:

N =W,.=W cosp =y, b h cosp

U=ly, -h-cos?B. — v -b-h-cos
(VW B) cosp Tw p

So the effective normal force N’ is given by:

N = (Yot - Yw) P h 1 cosp=v"bh1cosp
The driving forces can be given by:
W, =W’'sinB =y bh1sinf
P,=pPyV=7,V=y,ibh1
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INFINITE SLOPE ANALYSIS — Soil with seepage

where P,, is the seepage force and i is the hydraulic gradient defined as the
ratio between the hydraulic head measurements over the length of the flow

path: . Ah_Db-tanp _
L b/cosp

sinf

So P, will be given by:
P,=v,ibh1=y,bh1sinf

The available frictional strength along the failure plane will depend on ¢’

and the effective normal force and is given by
S=c'bsecf+(N-U)tan ¢’
=C bsecp+Ntan¢ =c’ bsecp+y bh1cosptan ¢’
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INFINITE SLOPE ANALYSIS — Cohesionless Soil

So the FOS for this case will be

S _c'b-secB+y'b-h-cosB-tang c'b-secBf+yb-h-cosf-tang
W, +P,, y'b-h-sinf+y,, -b-h-sinf Ysat -0 -h-sinf

FOS =

For a ¢ = 0 soil, the above expression may be simplified to give

If we suppose Yy =y, Yeat =V T YW =27, S0 FOS become:

FOS = 1. 1ane
2 tanp
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INFINITE SLOPE ANALYSIS — Soil with seepage

Horizontal Seepage

Slope Surface

The total and effective weight of the
FLOW NET 1]

slice, also in this case, are
/ h // y
respectively given by: ! 77 =S
/// 77 77 Pore Water Force \ N'+ U cosp
W=ysatbh1 4/< U=y,hb

W = (Yeu - Yw) Dh1=7bh 1 Failure Surface

The effective normal force N’ is given by: N'=N — U cosf
where N is the total normal force and U the pore water force acting on the

base of the slice:

N =W,.=W cosp =y, b hcosp and U=y,bh
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INFINITE SLOPE ANALYSIS — Soil with seepage

So the effective normal force N’ is given by:

N = (Yeat - Tw) P h 1 cosp =y bh1cosp

The driving forces can be given by:
W, =W’'sinB =y bh1sinf
P,=pPysV=7,V=y,ibh1

where P, is the seepage force and i is the hydraulic gradient defined as the
ratio between the hydraulic head measurements over the length of the flow

path, that, in this case, is given by:
_ Ah  b-tanf

tan
1 B
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INFINITE SLOPE ANALYSIS — Soil with seepage

So P, will be given by:
P,=v,ibh1=y,bh1tanp

In this seepage condition, P, lies on horizontal direction, so we can
subdivide P, in the perpendicular and parallel components:

P,L=P,sin =vy,bh1tanf sinp

P, = P,cosp =y,bh1tanp cosp

The available frictional strength along the failure plane will depend on ¢/,
the effective normal force N' and P, . and is given by
S=c'bsecp+ (N-P,1)tan ¢’
=Cc bsecB+(ybh1cosp-vy,bh1tanp sinp)tan ¢’
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INFINITE SLOPE ANALYSIS — Cohesionless Soil

Then, the FOS for this case will be

3 _f..ﬂ:t secff+ [y bheos B — ‘r’%_hhtﬂﬂﬁﬁlﬂﬁ}tﬂﬂﬂll
Wi + Puys Y bhsinf + v, bhtanfcos B

FO5=

If we suppose ¢’=0 and y' =y, FOS become:

FS = fcos B - tan zlu 1) tan q:'_ cog B 1‘,:'1 - mnf ﬁj tan q;.‘
" (cnP + tanBeosfl 2snp

i {'1 - tan’ ES::I tanq}l_ tan &
- Z tan p “tan 2B
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INFINITE SLOPE ANALYSIS — Comparison

An example can show better the differences of the previous determined
FOSs.

Example:
Cohesionless soil: y = 18 kN/m3, f' = 30°, FOS,, = 1,3.

Calculate maximum slope angles in all three previous slope configurations.

) tam ¢ ‘tart 30
Dry Soil Bacax =EI'E‘-'-ELI1( 05 }=ﬂr=1:a11{ 13 = 4%
tan ¢ “tar 3
Seepage parallel to the slope Boax = avctan {E : H}E) = gretan [ 13 =12,5°
: 1 tan ¢ 1 ¢ tan 307
Horizontal Seepage = = }: _( =12¢%
pag Bosa z-ar:ha.n( Fos H.F'ﬂ'—ﬂﬂz 13 .} 12

It is possible to note that the most onerous configuration is that of

horizontal seepage. 49



CIRCULAR SURFACE ANALYSIS

Circular failure surfaces are found to be the most critical in slopes

consisting of homogeneous materials.

There are two analytical methods that may be used to calculate the FOS

for a slope :

« the circular arc (¢ = 0)

* Friction circle.

S,
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CIRCULAR SURFACE ANALYSIS — Circular Arc

The simplest circular analysis is based on the assumption that a rigid,
cylindrical block will fail by rotation about its center and that the shear

strength along the failure surface is defined by the undrained strength.

As the undrained strength is

used, the angle of internal

friction, ¢, is assumed to be

zero (hence the ¢ = 0 methoa )

The FOS for such a slope may

be analyzed by taking the ratio

of the resisting and overturning

moments about the center of

the circular surface O. -



CIRCULAR SURFACE ANALYSIS — Circular Arc

If the overturning moments are given by W,x, and resisting moments are

given by c LR + W.,x,, the factor of safety for the slope will be:

Fa§ - W,

If the undrained shear strength

varies along the failure

surface, the ¢ L term must be

il 1

L 11 IA .
u

modified and treated as a

variable in the above

formulation.




CIRCULAR SURFACE ANALYSIS — Friction Circle

This method is useful for homogeneous soils with ¢ > 0, such that the
shear strength depends on the normal stress.

It may be used when both cohesive and frictional components for shear
strength have to be considered in the calculations.

The method is equally suitable for total or effective stress types of analysis.

The method attempts to satisfy the requirement of complete equilibrium by
assuming the direction of the resultant of the normal and frictional
component of strength mobilized along the failure surface. This direction
corresponds to a line that forms a tangent to the friction circle, with a

radius, Ry = R sin ¢,

This assumption is guaranteed to give a lower bound FOS value.
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CIRCULAR SURFACE ANALYSIS — Friction Circle

The cohesive shear stresses along the base of the failure surface ab, will
have a resultant, C_, that acts parallel to the direction of the chord ab.

Its location may be found by taking moments of the distribution and the
resultant, C_,, about the circle center. This line of action of resultant, C_,

can be located using

Friction Circle
A’\
(% EE)R=Cm-R_E =(%-EE}RE (\&

The distance R, of this line from

- Re

the center of the circle O is: Radius, R “ Jc

FORCE POLYGON
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CIRCULAR SURFACE ANALYSIS — Friction Circle

The actual point of application, A, is located at the intersection of the
effective weight force, which is the resultant of the weight and any pore
water forces. The resultant of the normal and frictional (shear) force, P, will
then be inclined parallel to a line formed by a point of tangency to the

friction circle and point A.

Friction Circle
7
As the direction of C_ is known, /
tha farce nnlvnnon cran ha eclaocead (\
Ll I\ 1VI U Hulyvul 1 wall 1 N UVIVUOUUUU \

to obtain the value of the

mobilized cohesive force. Again,

Radius, R “ Jc

the final FOS is computed with

FORCE POLYGON

the assumption F, = F, = FOS

C

along the failure circular surface.
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CIRCULAR SURFACE ANALYSIS — Friction Circle

The solution procedure is usually followed graphically. Solution procedure:

(1) Calculate weight of slide, W.
(2) Calculate magnitude and direction of the resultant pore water force, U

(may need to discretize slide into slices).

(3) Calculate perpendicular distance Friction Gircle
7
to the line of action of C.... (
(4) Find effective weight resultant, \&

W'’ from forces W and U, and its

R¢

intersection with the line of action
of C,, at A.

(5) Assume a value of F¢.

Radius, R “ Jc

FORCE POLYGON

(6) Calculate the mobilized friction angle ¢, = tan (tan ¢) / F, . -,



CIRCULAR SURFACE ANALYSIS — Friction Circle

(7) Draw the friction circle, with radius R; = R sin ¢,

(8) Draw the force polygon with W " appropriately inclined, and passing
through point A.

(9) Draw the direction of P, tangential to the friction circle.

(10) Draw direction of C,,, according Eriction Gircle

-

to the inclination of the chord linking 7
the end-points of the failure surface. (\
.

(11) The closed polygon will then

provide the value of C,..

(12) Using this value of C_, calculate
FC =C I-chord / Cm'
(13) Repeat steps Sto 12 until F, = F, .

FORCE POLYGON
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METHOD OF SLICES

If the mobilized strength for a ¢ — ¢ soil is to be calculated, the distribution

of the effective normal stresses along the failure surface must be known.
This condition is usually analyzed by discretizing the mass of the failure

slope into smaller slices and treating each individual slice as a unique

sliding block.
The method of slices is used —

Surface 10 soil unit 1
by most computer programs, Load
Y ~ MYy GWI; 8 / Y
as it can readily accommodate — . =V soi unit 2
complex slope geometries, [ ° /7Z soil unit 3
variable soil conditions, and Failure —

Surface —

the influence of external n=13 SLICES

boundary loads.
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METHOD OF SLICES — Basic assumptions (1)

There are several formulations of the method of slices in relation to the
assumption that the numerous authors had made. We can subdivide them

in three categories:

1. Assumptions on interslice forces direction
(Bishop, 1955; Spencer, 1967; Morgenstern-Price, 1965)

2. Assumptions on the thrust line position (Janbu, 1954)

3. Assumptions on the interslice forces distribution
(Sarma, 1973; Correia, 1988)
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METHOD OF SLICES — Basic assumptions (2)

All these methods are based on similar concepts, but they give different
FOSs values through the previous assumptions. However, all of them are

based on the Mohr-Coulomb failure criterion (rigid-perfect plastic behavior).

All limit equilibrium methods for slope stability analysis divide a slide mass
into n smaller slices, so that we can approximate the irregular base of the

slice (often an arc) as a chord.

Another hypothesis is that FOS is considered constant along the failure

surface.
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METHOD OF SLICES — System of forces

Each slice is affected by a general system of forces.

The thrust line connects the (.

points of application of the

interslice forces.

// Z(i+1)

7
X(i+1) +“Thrust line
W, e
3’/ I Ewn

The location of this thrust

line may be assumed or its

location may be determined

using a rigorous method of

analysis that satisfies

Assumed Shear
complete equilibrium. Surface ’ f N; = N} + ubseca
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METHOD OF SLICES — System of forces

The popular simplified methods of analysis neglect the location of the

interslice force because

complete equilibrium is not O!

satisfied for the failure mass.

// Z (i+1)

re
X(i+1) +“Thrust line
W, Pl
3’/ I Ewn
Assumed Shear

| | Surface g f; N; = N + ubseca,
indeterminate. 62

For this system, there are
(6n — 2) unknowns. Also,

since only four equations for

each slice (4n equations)

can be written for the limit

equilibrium for the system,

the solution is statically



METHOD OF SLICES — System of forces

Equations Condition
n Moment equilibrium for each slice
2n Force equilibrium in two directions (for each slice)
n Mohr— Coulqmb relationship between shear strength and
formal effective stress
4n Total number of equations
Unknowns Variable
1 FOS
n Normal force at base of each slice, N’
n Location of normal force, N’
n Shear force at base of each slice, T;
n-1 Interslice horizontal force, E;
n-1 Location of interslice horizontal force, E;
n-1 Interslice vertical force, X;

6n - 2

Total number of unknowns
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METHOD OF SLICES — Assumptions (3)

A solution is possible providing the number of unknowns can be reduced

by making some simplifying assumptions.

One of these common assumptions is that the normal forces on the base

of the slices acts at the midpoint, thus reducing the number of unknowns to
(5n — 2).

This then requires an additional (n — 2) assumptions to make the problem

determinate.

It is these assumptions that generally categorize the available methods of

analysis.
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METHOD OF SLICES —Common Methods

List of the common methods of analysis and the conditions of static

equilibrium that are satisfied in determining the FOS.

Force - Equilibrium

Method Em’l}qb?iﬁtm
X y
Ordinary method of slices (OMS) No No Yes
Bishop’s simplified Yes No Yes
Janbu’s simplified Yes Yes No
Corps of Engineers Yes Yes No
Lowe and Karafiath Yes Yes No
Janbu’s generalized Yes Yes No
Bishop’s rigorous Yes Yes Yes
Spencer's Yes Yes Yes
Sarma’s Yes Yes Yes
Morgenstern — Price Yes Yes Yes
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METHOD OF SLICES — General formulation

Consider a body of soil on the point of sliding on the surface ABCD. For the

purpose of analysis, we will divide the whole body of soil abode the surface

of sliding into n elementary slices, separated by n-1 vertical boundaries.

The choice of vertical
interslice boundaries is
merely a matter of

convenience.

In general, the failure
condition is not satisfied

on these surfaces.

Slice 1

l

Slice n

Slice i l
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METHOD OF SLICES — General formulation

If the body is stable, force and moment equilibrium conditions must be

satisfied for each slice, and also for the whole body.

The failure condition

T.=C + (oc,—u)tan ¢’ .
IcCe n

must be satisfied everywhere Slice i l
on the surface ABCD. l T D

If F, = F, = F along the failure  Sice 1 >

surface, we may define a

factor of safety in the form A 5 C
tan &
Fe

Tf _

'I=F

%+lnn—u.1*
e
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METHOD OF SLICES — General formulation

For the slice i: T, =[tbseca] ;N,=[c,b seca]

Then:
T=lrhascal = %[::LI: seco+ N —ub sec ol tan sﬂi

It will be convenient to specify the pore pressure u, on BC in term of the

pore pressure ratio r, equal to [ub/W], where Wi, is the weight of slice i. Then
1r . :
T = ﬁ[ch agco+ (N —Wry, sec o) tan ;1::]1 (1)

Vertical forces equilibrium of slice i
[T sina + N cosa], = [W - AX], (2)
where
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METHOD OF SLICES — General formulation

Substituting equation (1) into number (2) we obtain

FH;,E [f:'h sec o+ (N — Wr, see o tan:q}'} + N cos u:zl = [W— 2%],
1 3 . Bl 1 i
[H {:zgmtanﬂ:r + cos 1::} +ch !;[I ﬁrf:c{—!;# (WI‘u sa:ntan¢j1=lw—£}ﬂ1

Rearranging the terms, this yields

1 tand'y c'b
Ny=—|W|l4+r,tanu ——tano — AX (3)
My F ; F .

where

m, = [::r:-s ot =+ sln o

tar 4
= |

Substitute equation (3) into number (1) to give

'1 1 3
o [+ Wt =) — aX)an 7], @

T, =



METHOD OF SLICES — General formulation

Tangential forces equilibrium of slice |
T, + AL cos a, + &K, sin @, — W, sin o, = @ (5)
Rearranging the terms, this yields
Tl.
CoE

Substituting T; with equation (4) we obtain
[ + {W(1—1,) — 8%} tan $'], — [(W — 8X) tan o], = 4F,

SET @,
Fmg,

In considering the equilibrium of the whole soil mass, the internal interslice
forces (E, to E, and X, to X,) must vanish. Also if there are no external
forces on the end slices,

Ei=Epen=X1 = Xpey= 0
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METHOD OF SLICES — General formulation

So that

T

\ 28C O .
[c'h + (Wil—r, ) —aXltang'],— » [(W—aX)tana],=0 (6)
Z o (Wii-r,) f Z ﬂ

| =

Moment equilibrium of slice i around pivot O

15""‘3“‘1"'7{1(?51_%}_7‘5“1 {?FL"'%)_ELT:L"'EH: Ty = Tm+ N §

o

Since the moments of all internal forces (E;, X;) must also vanish when

considering the whole body,

ZT:'. a4 = E{wi % —N; f) (7)
i=1 i=1
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METHOD OF SLICES — General formulation

Substituting the expression for T, and N, obtained previously this becomes

b= [e'h + [W(1-r,) - aX)tan ¢'],
F= e (8)

e, [V “]l_Einﬂﬁf:. [W (’1'|'Tu tan « m‘;#}—i;‘ tan o — &ﬁ:|

In the case we have circular failure surface, equation (8) become

1

_ il‘ﬂ [c'h + (W(1l—ry)—AX}tan¢'],

Zrag [W gina],

(9)




METHOD OF SLICES —OMS

The Ordinary Method of Slices (OMS): this method (Fellenius, 1927, 1936)

is one of the simplest procedures based on the method of slices and
neglects all interslice forces (X; and E,) and fails to satisfy force equilibrium
for the slide mass as well as for individual slices. So the number of
unknowns become: (5n—-2)—-(n—-1)—-(n—-1)—-(n—=1) = 2n +1 unknowns
< 4n equations. X E, “i
This method consider a circular failure surface.

If we remember that;

T, = %[ﬁh sec o+ (N — ub sec o) tan xirl

and manipulating equation (7) to give

L8 L8

‘Z‘I'LH = > (W, Ksinw)

=1 i=1
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METHOD OF SLICES —OMS

we obtain

_ 2=y [cbasca + (N—ubsecow)tan g'),

d Zimq [W sln a,

The Ordinary Method of Slices can be used also in the case of layered

soils. It is sufficient to consider the correct soil strength parameter (¢’ and

| of each slice.

¢') at the base
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METHOD OF SLICES — Bishop’s Method

The Bishop’s Method is one of the most famous methods based on limit

equilibrium. He makes the hypothesis of a circular failure surface.

There are two different approaches:

a. Bishop’s Rigorous Method.

Satisfy moment equilibrium — circular failure surface

b. Bishop’s Simplified Method.

Satisfy complete equilibrium — circular failure surface
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METHOD OF SLICES — Bishop’s Method

a. Bishop’s Rigorous Method

Bishop (1955) considers in his rigorous formulation equation (6) and
equation (9).
He also imposed that

X, = A f(x)

where A is a constant unknown and f(x) a known function.

We saw early that there are n — 2 additional unknown which make the
problem indeterminate. In this case, due to the previous assumption, all X
become known if A is defined. Therefore, the total number of unknowns is:

5n — 2) — (n — 1) + 1 = 4n unknowns = 4n equation. The problem is

determinate and the equilibrium equations are satisfied.
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METHOD OF SLICES — Bishop’s Method

Note: There could be several combinations of the unknown A and the
assumed known function f(x) that satisfy the problem. However, some of
these combinations could be not admissible. It is important to check out

other two requirements:

1. Shear strength along vertical
interslice surfaces must be less than
the failure strength of the soill, i.e.

T, =X//A; <t =C + o tan ¢’
In fact, these surfaces can’t reach

the failure condition.

2. The thrust line must be located

iInside the sliding mass. 77



METHOD OF SLICES — Bishop’s Method

b. Bishop’s Simplified Method

In his simplified approach, Bishop (1955) assumes that all vertical interslice
shear forces X, are zero, reducing the number of unknowns by (n — 1). This

leaves (4n — 1) unknowns, leaving the solution overdetermined.

So, X =0, A =0and AX, = 0 give

L d — 1, )} tan ¢
F _ EL:L ml:l;i [ﬂ h + IW{:']. uj} ta ‘EE ]r
I, [W sln o,
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METHOD OF SLICES — Bishop’s Method

Solution procedure:

1) Assume initial value of F

2) Calculate with Fy m_ ; for each slice

3) Determine F with the above expression F,

79



METHOD OF SLICES — Janbu’s Method

Similar to Bishop’s method, the Janbu’'s method can be discerned in two

different approaches:

a. Janbu’s Simplified Method.

Satisfy force equilibrium — Any kind of failure surface

b. Janbu’s Generalized Method.
Janbu assumes a location of the thrust line, thereby reducing the
number of unknowns to (4n — 1). Similar to the rigorous Bishop method,
Janbu also suggests that the actual location of the thrust line is an
additional unknown, and thus equilibrium can be satisfied rigorously if
the assumption selects the correct thrust line. — Any kind of failure

surface
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METHOD OF SLICES — Janbu’s Method

a. Janbu’s Simplified Method

Janbu (1954, 1957, 1973) assumes zero interslice vertical shear forces X,
reducing the number of unknowns to (4n — 1). This leads to an

overdetermined solution that will not satisfy moment equilibrium conditions.

Equation (6) can be rewritten
Fzﬁtﬁi [¢'h + (W({l-r,)])tan @], z[ﬂ’tanﬂ],—ﬂ

From which:
In 228 e'h + [W(l-r,)}tan @],

Moy
L=, [W tan &

F=
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METHOD OF SLICES — Janbu’s Method

The assumption of zero vertical interslice forces give an overvalued FOS.

To account for this inadequacy, Janbu presented a correction factor, f, (>1),

so that:

I'}n‘ﬂiﬁ: = for Megirutated

This modification factor is a function of the slide

parameters of the soil.
1.20

There is no consensus concerning the

selection of the appropriate f, value for 1.15

a surface intersecting different soil g- 110 kb
]

types. In cases where such a mixed ufiz

1.05 f

variety of soils is present, the ¢ — ¢
curve is generally used to correct the 1.00

calculated FOS value.

geometry and the strength

7
d ” failure surface
i ~

0 — 01 02 03 04

d/ L ratio o



METHOD OF SLICES — Janbu’s Method

For convenience, this modification factor can also be calculated according

-
fa=1+h, ITE_ 1.4 {Ej “

where b, varies according to the soil type:

to the formula

c only soils: b, =0.69
1.20
¢ only solls: b, =0.31 7
115 | d  failure surface
c and ¢ soils: b,=0.5 10 - |
et ¢ - only soil mommmm "‘
5 110} / ¢, c - soils
6 . ; -
= 1.05 / ————
] - 'ﬁ-onlysoil
"
1.00

0 o1 02 03 o4
d/ L ratio 83



METHOD OF SLICES — Advanced Methods

Morgenstern — Price Method Morgenstern and Price (1965) propose a
method in which the inclination of the interslice resultant force is assumed
to vary according to a “portion” of an arbitrary function, i.e.

X/ E; = A f(x)
This additional “portion” of a selected function introduces an additional
unknown, leaving 4n unknowns and 4n equations.
The Morgenstern — Price Method satisfy equations (6) and (8) and then the

force and moment equilibrium for any kind of failure surface.

Spencer’'s Method Spencer (1967, 1973) rigorously satisfies static
equilibrium by assuming that the resultant interslice force has a constant,
but unknown, inclination. This method derives from Morgenstern — Price

Method, assuming f(x) = cost.
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METHOD OF SLICES — GLE

A general limit equilibrium (GLE) formulation (Chugh, 1986; Fredlund et al.,

1981) can be developed to encompass most of the assumptions used by
the various methods and may be used to analyze circular and noncircular

failure surfaces.

In view of this universal applicability, the GLE formulation has become one
of the most popular methods as its generalization offers the ability to model
a discrete version of the Morgenstern and Price (1965) procedure via the

function used to describe the distribution of the interslice force angles.

The method can be used to satisfy either force and moment equilibrium or,

if required, just the force equilibrium conditions.
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METHOD OF SLICES — GLE

The GLE procedure relies on the selection of an appropriate function that

describes the variation of the interslice force angles to satisfy complete

equilibrium.

The main difficulty in using the GLE procedure is related to the requirement
that the user verify the reliability and “reasonableness” of the calculated
FOS. This additional complexity prevents the general use of the GLE
method for automatic search procedures that attempt to identify the critical
failure surface. However, single failure surfaces can be analyzed and the

detailed solution examined for reasonableness.
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STABILITY CHARTS

Slope stability charts are useful for preliminary analysis, to compare

alternates that can later be examined by more detailed analyses.

Chart solutions also provide a rapid means of checking the results of
detailed analyses.

Another use for slope stability charts is to back-calculate strength values
for failed slopes to aid in planning remedial measures. This can be done by
assuming an FOS of unity for the conditions at failure and solving for the

unknown shear strength.

The major shortcoming in using design charts is that most of them are for

ideal, homogeneous soil conditions, which are not encountered in practice.
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STABILITY CHARTS — historical background

Slope

Analytical

Author Parameters Inclinations Methods Notes
Taylor (1948) Cy 0-90° g=0 Undrained analysis
c, ¢ 0-90° Friction circle Dry slopes only
Bishop and c, @, Iy 11-26.5°  Bishop One of the firstto include
Morgenstern (1960) effects of water
Gibson and Cy 0-90° g=0 Undrained analysis with
Morgenstern (1960) c,increasing linearly
with depth; zero
strength at ground level
Spencer (1967) c, o r, 0-34° Spencer Toe circle only
Janbu (1968) Cy 0-90° g=0 Extensive series of charts
c, o8 r, Janbu GPS for seepage and tension
crack effects
Hunter and Schuster Cy 0-80° ¢=0 Undrained analysis with
(1968) c,Increasing linearly
with depth; finite
strength at ground level
Chen and Giger c, ¢ 20-90° Limit
(1971) analysis
O’Connor and c, @, Iy 11-26° Bishop Extended Bishop and
Mitchell (1977) Morgenstern (1960) to
include N. = 0.1
Hoek and Bray c, ¢ 0-90° Friction circle Includes groundwater and
(1977) tension cracks
c, ¢ 0-90° Wedge 3-D analysis of wedge
block
Cousins (1978) c, & I, 0-45° Friction circle Extension of Taylor
(1948)
Charles and Soares ¢ 26-63° Bishop Nonlinear Mohr-Coulomb
(1984) failure envelope,
r=A(c )
Barnes (1991) c, @ I, 11-63° Bishop Extension of Bishop and
Morgenstern (1960);

wider range of slope
angles
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STABILITY CHARTS — Taylor’s Charts

Taylor (1948) developed slope stability charts for soils with ¢ = 0 and ¢ > 0.
As shown in these charts, the slope has an angle g, a height H, and base

stratum at a depth of D-H below the toe, where D is a depth ratio.

The charts can be used to determine the developed cohesion, c,, as
shown by the solid curves, and n-H, which is the distance from the toe to
the failure circle, as indicated by the short dashed curve.

If there are loadings outside the toe that prevent the circle from passing
below the toe, the long dashed curve should be used to determine the
developed cohesion. Note that the solid and the long dashed curves
converge as n approaches zero. The circle represented by the curves on
the left of n = 0 do not pass below the toe, so the loading outside the toe

has no influence on the developed cohesion.
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STABILITY CHARTS — Taylor’s Charts
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STABILITY CHARTS — Bishop-Morgenstern’s Charts

Bishop and Morgenstern’s Procedure (1960) is quite more complex than
Taylor’s Charts. Compared to Taylor's method, this one, furthermore, can
take into account water pore pressure inside the sliding mass and on the
failure surface through water pore pressure ratio r:

u
T, = —
= E.?

Bishop and Morgenstern’s Procedure is suitable for effective stress

analysis in homogeneous soils.

The charts are based on two parameters that are called stability factors m
and n, so the FOS is defined as
FOS=m-nr,
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STABILITY CHARTS — Bishop-Morgenstern’s Charts

m and n depend on several parameters:

* 3, slope angle;

« ¢, sail friction angle;
«d. = H,/H, depth factor )

¢’/ (y H), similar to Taylor’s stability number

d; has a small influence on the solution, so one can refer essentially to
three value of it: 1.00, 1.25, 1.50.

In the charts are treated three conditions: c'/(yH)=0.05
c'/(yH)=0.025
c/(yH)=0

In general, user’s condition is located between two of the previous

situations. 92



STABILITY CHARTS — Bishop-Morgenstern’s Charts

Normally, the user refers to an average r, (along failure surface) given by:

+ = 2‘:1(‘{% ’-”mj
By}

where hi is the piezometric height of each of the slices in which the sliding

mass can be subdivided.

Note: This method doesn'’t give the critical surface, but gives information

Given a series of geometrical and geotechnical parameters, it does exist a

r, value indicated with r, ., through FOS for d; = 1.0 is equal to FOS for d; =

My = T
- T'E - 1
T T ™

R

1.25, so that: {Fl =My — My Ty

Flog =Myge — Mg Mg
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STABILITY CHARTS — Bishop-Morgenstern’s Charts

Analogously, it exists a value of r, which gives F, ,; = F, ;, that is

o _ 1Ti1g — Mipag
T‘H:.IF —_—
LE W - Wi

If the calculated average r, is greater than r’ ., then F,,; < F,, so the

u,e’

condition with d; = 1.25 is more critical.

The same reasoning can be made comparing user’s situation with d; = 1.25
condition and d; = 1.5 condition for establish which is the most critical

situation.
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Morgenstern’s Charts
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