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Abstract

This paper applies numerical limit analyses to evaluate the ultimate bearing capacity of a surface footing resting on a rock mass whose

strength can be described by the generalised Hoek–Brown failure criterion [Hoek E, Carranza-Torres C, Corkum B. Hoek–Brown failure

criterion—2002 edition. In: Proceedings of the North American rock mechanics society meeting in Toronto, 2002]. This criterion is

applicable to intact rock or heavily jointed rock masses that can be considered homogeneous and isotropic. Rigorous bounds on the

ultimate bearing capacity are obtained by employing finite elements in conjunction with the upper and lower bound limit theorems of

classical plasticity. Results from the limit theorems are found to bracket the true collapse load to within approximately 2%, and have

been presented in the form of bearing capacity factors for a range of material properties. Where possible, a comparison is made between

existing numerical analyses, empirical and semi-empirical solutions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The ultimate bearing capacity is an important design
consideration for dams, roads, bridges and other engineer-
ing structures, particularly when large rock masses are the
foundation materials. With the exception of some very soft
rocks and heavily jointed media, the majority of rock
masses provide an excellent foundation material. However,
there is a need to accurately estimate the ultimate bearing
capacity for structures with high foundation loads such as
tall buildings and dams.

Rigorous theoretical solutions to the problem of
foundations resting on rock masses do not appear to exist
in the literature. This may be attributed to the fact that
rock masses are inhomogeneous, discontinuous media
composed of rock material and naturally occurring
discontinuities such as joints, fractures and bedding planes.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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This makes the derivation of simple theoretical solutions
based on limit equilibrium methods very difficult. In
addition, fractures and discontinuities occurring naturally
in rock masses are difficult to model using the displacement
finite element method without the addition of special
interface or joint elements. The upper and lower bound
formulations of Lyamin and Sloan [1,2] are ideally suited
to analysing jointed or fissured materials due to the
existence of discontinuities throughout the mesh. These
discontinuities allow an abrupt change in stresses in the
lower bound formulation and in velocities in the upper
bound formulation. Moreover, employing discontinuities
when modelling geotechnical problems enables great
flexibility as they can be assigned different material
properties and/or yield criteria. This unique feature was
recently exploited by Sutcliffe et al. [3] and Zheng et al. [4]
who used the formulations of Sloan [5] and Sloan and
Kleeman [6] to analyse the bearing capacity of jointed rock
and fissured materials respectively.
The purpose of this paper is to take advantage of the

ability of the limit theorems to bracket the actual collapse
load by computing both lower and upper bounds for the

www.elsevier.com/locate/ijrmms


ARTICLE IN PRESS
R.S. Merifield et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 920–937 921
bearing capacity of strip footings on a broken rock mass.
These solutions are obtained using the numerical techni-
ques developed by Lyamin and Sloan [1,2] which have been
modified to incorporate the well-known Hoek–Brown yield
criterion [7]. The applicability and background of the
Hoek–Brown criterion will be discussed in the following
section in more detail.

2. The generalised Hoek–Brown failure criterion

2.1. Applicability

It is well known that the strength of jointed rock masses
is notoriously difficult to assess. The behaviour of a rock
mass is complicated greatly because deformations and
sliding along naturally occurring discontinuities can occur
in addition to deformations and failure in the intact parts
(blocks) of the rock mass. Unfortunately, laboratory tests
on specific core samples is often not representative of a
rock mass at field scale, while in situ strength testing of the
rock mass is seldom practically or economically feasible.
Nonetheless, engineers and geologists are required to
predict the strength of large-scale rock masses when
designing such things as drifts, foundations, slopes, tunnels
and caverns.

Many criteria have been developed that seek to capture
the important elements of measured rock strength or seek
to modify theoretical approaches to accommodate experi-
mental evidence. One currently accepted approach to
estimating rock mass strength is to use the Hoek–Brown
failure criterion where the required parameters are
estimated with the help of a rock mass classification
system. The Hoek–Brown failure criterion is an empirical
criterion developed through curve-fitting of triaxial test
data. It was originally developed in the 1980s [8] for intact
rock and jointed rock masses, and has been subject to
continual refinement [7]. The Hoek–Brown criterion is one
of the few non-linear criteria used by practising engineers
[9] to estimate rock mass strength. It is therefore
appropriate to use this yield criterion when predicting the
bearing capacity of surface foundations on rock.

It is important to note that the Hoek–Brown failure
criterion, which assumes isotropic rock and rock mass
behaviour, should only be applied to those rock masses in
which there are a sufficient number of closely spaced
discontinuities, with similar surface characteristics, that
isotropic behaviour involving failure on discontinuities can
be assumed. When the structure being analysed is large and
the block size small in comparison, the rock mass can be
treated as a Hoek–Brown material. Where the block size is
of the same order as that of the structure being analysed, or
when one of the discontinuity sets is significantly weaker
than the others, the Hoek–Brown criterion should not be
used. In these cases, the stability of the structure should be
analysed by considering failure mechanisms involving the
sliding or rotation of blocks and wedges defined by
intersecting structural features.
With reference to the bearing capacity problem con-
sidered herein, the applicability of the Hoek–Brown
criterion is best described by referring to Fig. 1. After
Hoek [10] it appears three main structural groups can be
differentiated for rock masses, namely GROUP I, GROUP
II, and GROUP III. Fig. 1 shows the transition from an
isotropic intact rock (GROUP I), through a highly
anisotropic rock mass (GROUP II), to an isotropic heavily
jointed rock mass (GROUP III), with increasing sample
size for a surface foundation on a hypothetical rock mass.
Which of these structural groups will apply in a given case
will depend on the width of the foundation relative to the
discontinuity spacing, and the orientations and strengths of
the discontinuities. In this paper it has been assumed that
the underlying rock mass is either: (1) intact or; (2) heavily
jointed with ‘‘small spacing’’ between discontinuities so
that, on the scale of the problem, it can be regarded as an
isotropic assembly of interlocking particles. Consequently,
the results presented are valid for ‘‘intact rock’’ (GROUP
I) and ‘‘several discontinuities’’ and ‘‘jointed rock mass’’
(GROUP III) conditions, respectively.
The relative concept of ‘‘small spacing’’ as mentioned

above, was proposed by Serrano and Olalla [11] as a means
of quantifying the validity of using the Hoek–Brown failure
criterion for bearing capacity predictions. A new para-
meter, the ‘‘spacing ratio of a foundation’’ (SR) was
proposed that depends, among other things, on the width
of the foundation. It is defined by the expression;

SR ¼ B
Xn

i¼1

1

Smi

¼ B
Xn

i¼1

li,

where B is the foundation width; Smi is the joint spacing of
the ith discontinuity family; li is the frequency of the ith
discontinuity family; and n is the number of discontinuity
families. Serrano and Olalla suggest a relatively ‘‘small
spacing’’ is when ðSRÞ is greater than 60. This would imply
that there are four families of discontinuities each
appearing 15 times across the foundation width. Therefore
the Hoek–Brown criterion is not valid when SRo60,
except when the value of SR is so low that the rock mass
can be considered as intact and belonging to the
aforementioned GROUP I.
It should be noted that, in the case of intact rock

(GROUP I), common sense needs to be exercised when
using the results presented in this paper since the failure of
the foundation may be brittle rather than plastic.
The effect of scale on the bearing capacity of founda-

tions on rock needs to be considered, particularly when the
underlying assumption is that the rock mass behaves as a
homogeneous isotropic continuous medium. There will be
a distinct difference in the ultimate behaviour of ‘‘large’’
and ‘‘small’’ foundations. For the case of ‘‘large’’ founda-
tions where the load covers an extensive area, a consider-
able volume of the rock mass is affected and the stresses
caused by gravity on the potential flow surfaces are
comparable to that part of the strength which is due to
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Fig. 1. Applicability of the Hoek–Brown yield criterion for shallow foundations.
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the rock cohesion. In this case it seems reasonable to
assume that such a problem can be studied using plasticity
theories. However, ‘‘small’’ foundations only influence a
small volume of the rock mass and the stresses caused by
self-weight will be negligible when compared to the
strength of the rock. In this case the ultimate behaviour
may be brittle in nature and the theories of plasticity may
not be appropriate. Unfortunately, there is currently no
guidance for engineers regarding what constitutes a ‘‘large’’
or ‘‘small’’ foundation. As pointed out by Serrano and
Olalla [11] more research is required to quantify this
problem.

2.2. Limit analysis implementation

One of the key features of the Lyamin and Sloan [1,2]
formulations is that they can deal with general yield criteria
including multi-surface ones where several convex domains
are combined to constrain the stresses at each node of the
mesh. These combinations can be different for different
parts of the discretised body. Because they are employed in
their native form, a wide range of yield criteria can be used
in the analysis. Each of the surfaces must be convex and
smooth but the resulting composite surface, though
convex, is generally non-smooth. An example of a multi-
surface yield function is where the conventional (non-
smooth) Tresca criterion is combined with a transition
surface to round the corners in the octahedral plane.
Another example is the use of a simple plane to cut the
apex of a cone-like yield surface. This type of cut-off is
often used for modelling materials such as rock, and leads
to a cup-shaped surface.
In this section, details of the latest version of the

Hoek–Brown yield criterion [7] and how it has been
incorporated into the limit analysis formulations of
Lyamin and Sloan [1,2] are discussed.
The Hoek–Brown failure criterion for rock masses was

first described in 1980 [8] and has been subsequently
updated in 1983, 1988, 1992, 1995, 1997, 2001 and 2002.
A brief history of its development can be found in Hoek
[12]. The latest version that is used here can be written as

s01 ¼ s03 þ sci mb

s03
s0ci

þ s

� �a

. (1)

The relationships between mb=mi, s and a and the
geological strength index (GSI) are as follows:

mb ¼ mi exp
GSI � 100

28� 14D

� �
, (2)

s ¼ exp
GSI � 100

9� 3D

� �
, (3)
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a ¼ 1
2
þ 1

6
e�GSI=15 � e�20=3
� �

. (4)

The GSI was introduced because Bieniawski’s rock mass
rating (RMR) system [13] and the Q-system [14] were deemed
to be unsuitable for poor rock masses. The GSI ranges from
about 10, for extremely poor rock masses, to 100 for intact
rock. The parameter D is a factor that depends on the degree
of disturbance. The suggested value of the disturbance factor
is D ¼ 0 for undisturbed in situ rock masses and D ¼ 1 for
disturbed rock mass properties. For the analyses presented
here, a value of D ¼ 0 has been adopted.
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The unconfined compressive strength is obtained by
setting s3 ¼ 0 in Eq. (1), giving

sc ¼ scis
a (5)

and the tensile strength is

st ¼ �
ssci

mb

. (6)

In a similar manner to the Mohr–Coulomb failure
envelope, the Hoek–Brown yield surface has apex and
corner singularities in stress space. The direct computation
of the derivatives at these locations, which are required for
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the non-linear programming (NLP) solver, becomes
impossible. This issue can be resolved using three different
approaches; namely, global smoothing, local smoothing
and multi-surface representation (which includes both a
priori and dynamic linearisation). As the current study is
limited to the case of plain strain conditions, the corners
are automatically avoided and the only singularity which
needs to be dealt with is the apex of the yield surface.
The easiest options to implement are a simple tension cut-
off (which is a multi-surface technique) or a quasi-
ZONE I ZONE II

q
u

q
u
= [s a + (mb s a +
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Fig. 4. Lower bound solution for bearing ca

14

12

10

8

6

4

N
�

2

0
0.0001 0.0010 0.0

ζ

Fig. 5. Bearing capacity factor for weigh
hyperbolic approximation (which is a global smoothing
technique). The authors decided to adopt the later
approach as a similar method has been previously
employed by Abbo and Sloan [15] for smoothing the
Mohr–Coulomb yield criteria. The prefix ‘‘quasi’’ is used
here because the Hoek–Brown yield surface is already
curved in the meridional plane and the suggested approx-
imation is not a pure hyperbolic one. A brief description of
the procedure is provides as follows (more details can be
found in [15]).
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First, the Hoek–Brown yield function given in Eq. (1) is
expressed in terms of stress invariants as

f HB ¼
ffiffiffiffiffi
J2

p
gðyÞ þ

ffiffiffiffiffi
J2

p
hðyÞ þ bI1 þ w

� �a
, (7)

where I1 is the first stress invariant, J2 is the second
deviatoric stress invariant and y is the Lode angle related to
the third deviatoric stress invariant J3, whereas parameters
b and w, and functions gðyÞ and hðyÞ are given by the
following expressions:

gðyÞ ¼ �2 cosðyÞ, (8)

hðyÞ ¼ �mbs
ð1�aÞ=a
ci cosðyÞ þ

sinðyÞffiffiffi
3
p

� �
, (9)
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b ¼ mbs
ð1�aÞ=a
ci , (10)

w ¼ ss1=aci . (11)

Next, quasi-hyperbolic smoothing is applied by permuting
J2 with a small term � according to

Ĵ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ �2

p
, (12)

on condition that � is related to the tensile strength of
material by the rule

� ¼ minðd;mrjrgð0Þ þ ðrhð0Þ þ wÞa ¼ 0Þ. (13)

The constants d and m must be chosen to balance the
efficiency of the NLP solver against the accuracy of the
locity (Upper Bound)

d)

e element mesh.



ARTICLE IN PRESS
R.S. Merifield et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 920–937926
representation of the original yield surface. The values used
in the current study are d ¼ 10�6 and m ¼ 10�1.

The resulting approximation of the Hoek–Brown yield
criterion can be written as

f HB ¼ Ĵ2gðyÞ þ Ĵ2hðyÞ þ bI1 þ w
� �a

(14)

and is now a smooth and convex function in the meridional
plane. An illustration of the original and smoothed
Hoek–Brown curves in the ðI1;

ffiffiffiffiffi
J2

p
Þ plane for zero y is

given in Fig. 2. It should be noted that the difference
between the smooth approximation and the original yield
surface has been greatly exaggerated in this figure by
selecting values of m and r that are much larger than what
was actually adopted. The original and smoothed yield
surfaces are almost indistinguishable when the actual
values of m and r are used.

2.3. Equivalent Mohr–Coulomb parameters

Since many geotechnical analysis methods still use the
Mohr–Coulomb failure criterion, it is sometimes necessary
for practising engineers to determine equivalent angles of
friction and cohesive strengths for each rock mass and
stress range. In the context of this paper, estimating these
equivalent parameters will enable a direct comparison to be
Table 1

Values of the bearing capacity factor for a weightless rock

GSI mi Ns0 Average Ns0 Kulhawy and

Carter [20]

Ns0 Serrano et al.

[24]

G

10 1 0.015 0:009 ð�40%Þ 0:010 ð�35%Þ
10 5 0.042 0:016 ð�61%Þ 0:035 ð�17%Þ
10 10 0.077 0:022 ð�71%Þ 0:072 ð�7%Þ
10 20 0.156 0:032 ð�80%Þ 0:159 ðþ2%Þ
10 30 0.238 0:039 ð�83%Þ 0:259 ðþ9%Þ
10 35 0.288 0:043 ð�85%Þ 0:314 ðþ9%Þ
20 1 0.044 0:026 ð�41%Þ 0:036 ð�16%Þ
20 5 0.119 0:046 ð�61%Þ 0:111 ð�6%Þ
20 10 0.209 0:062 ð�70%Þ 0:204 ð�2%Þ
20 20 0.389 0:086 ð�78%Þ 0:397 ðþ2%Þ
20 30 0.575 0:106 ð�82%Þ 0:600 ðþ4%Þ
20 35 0.670 0:114 ð�83%Þ 0:704 ðþ5%Þ
30 1 0.092 0:054 ð�41%Þ 0:084 ð�8%Þ
30 5 0.235 0:095 ð�60%Þ 0:227 ð�3%Þ
30 10 0.397 0:127 ð�68%Þ 0:393 ð�1%Þ
30 20 0.713 0:174 ð�76%Þ 0:716 ð0%Þ
30 30 1.022 0:210 ð�79%Þ 1:038 ðþ2%Þ
30 35 1.193 0:226 ð�81%Þ 1:200 ðþ1%Þ
40 1 0.165 0:101 ð�39%Þ 0:158 ð�4%Þ
40 5 0.401 0:171 ð�57%Þ 0:393 ð�2%Þ
40 10 0.659 0:226 ð�66%Þ 0:654 ð�1%Þ
40 20 1.149 0:306 ð�73%Þ 1:147 ð0%Þ
40 30 1.630 0:368 ð�77%Þ 1:626 ð0%Þ
40 35 1.873 0:395 ð�79%Þ 1:863 ð�1%Þ
50 1 0.281 0:176 ð�37%Þ 0:274 ð�3%Þ 1

50 5 0.644 0:290 ð�55%Þ 0:638 ð�1%Þ 1

50 10 1.037 0:380 ð�63%Þ 1:031 ð�1%Þ 1

50 20 1.765 0:510 ð�71%Þ 1:760 ð0%Þ 1

50 30 2.467 0:610 ð�75%Þ 2:458 ð0%Þ 1

50 35 2.817 0:654 ð�77%Þ 2:801 ð�1%Þ 1
made between Hoek–Brown solutions and equivalent
Mohr–Coulomb solutions.
The choice of method to use for determining equivalent

cohesion and friction angle is largely a matter of taste and
experience. An equivalent cohesion and friction angle at a
specified normal stress or minor principal stress, as
determined by an elastic analysis, may give locally accurate
values for a small stress variation. Alternatively, average
values applicable to a wider range of stress conditions may be
obtained by using a regression procedure. However, this may
lead to an underestimate of the strength for low stresses and
an overestimate for high stresses. Nonetheless, a regression
approach appears to be the most widely accepted method
and is typically performed by fitting a linear relationship to
the curve generated by Eq. (1) for a range of minor principal
stress values defined by stos3os03max. This has been
performed recently by Hoek et al. [7] where the fitting
process involves balancing the areas above and below the
Mohr–Coulomb relation. This results in the following
equations for the angle of friction and cohesive strength:

c0 ¼
sci½ð1þ 2aÞsþ ð1� aÞmbs03n�ðsþmbs03nÞ

a�1

ð1þ aÞð2þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð6ambðsþmbs03nÞ

a�1
Þ=ð1þ aÞð2þ aÞ

q ,

(15)
SI mi Ns0 Average Ns0 Kulhawy and

Carter [20]

Ns0 Serrano et al.

[24]

60 1 0.465 0:299 ð�36%Þ 0:458 ð�1%Þ
60 5 1.013 0:479 ð�53%Þ 1:006 ð�1%Þ
60 10 1.597 0:623 ð�61%Þ 1:588 ð�1%Þ
60 20 2.667 0:830 ð�69%Þ 2:658 ð0%Þ
60 30 3.644 0:990 ð�73%Þ 3:673 ðþ1%Þ
60 35 4.186 1:060 ð�75%Þ 4:170 ð0%Þ
70 1 0.765 0:503 ð�34%Þ 0:759 ð�1%Þ
70 5 1.582 0:785 ð�50%Þ 1:574 ð�1%Þ
70 10 2.444 1:012 ð�59%Þ 2:434 ð0%Þ
70 20 4.012 1:339 ð�67%Þ 3:998 ð0%Þ
70 30 5.491 1:592 ð�71%Þ 5:470 ð0%Þ
70 35 6.068 1:703 ð�72%Þ 6:187 ðþ2%Þ
80 1 1.260 0:847 ð�33%Þ 1:254 ð�1%Þ
80 5 2.473 1:284 ð�48%Þ 2:463 ð0%Þ
80 10 3.745 1:640 ð�56%Þ 3:732 ð0%Þ
80 20 6.040 2:154 ð�64%Þ 6:019 ð0%Þ
80 30 8.195 2:553 ð�69%Þ 8:171 ð0%Þ
80 35 9.242 2:727 ð�70%Þ 9:210 ð0%Þ
90 1 2.083 1:428 ð�31%Þ 2:076 ð0%Þ
90 5 3.881 2:102 ð�46%Þ 3:869 ð0%Þ
90 10 5.758 2:658 ð�54%Þ 5:741 ð0%Þ
90 20 9.125 3:466 ð�62%Þ 9:100 ð0%Þ
90 30 12.270 4:092 ð�67%Þ 12:237 ð0%Þ
90 35 13.794 4:367 ð�68%Þ 13:738 ð0%Þ
00 1 3.461 2:414 ð�30%Þ 3:449 ð0%Þ
00 5 6.124 3:449 ð�44%Þ 6:114 ð0%Þ
00 10 8.896 4:317 ð�51%Þ 8:875 ð0%Þ
00 20 13.847 5:583 ð�60%Þ 13:809 ð0%Þ
00 30 18.444 6:568 ð�64%Þ 18:390 ð0%Þ
00 35 20.668 7:000 ð�66%Þ 20:628 ð0%Þ
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f0 ¼ sin�1
6ambðsþmbs03nÞ

a�1

2ð1þ aÞð2þ aÞ þ 6ambðsþmbs03nÞ
a�1

" #
, (16)

where s3n ¼ s03max=sci.
Note that the value of s03max, the upper limit of confining

stress over which the relationship between the Hoek–Brown
and the Mohr–Coulomb criteria is considered, has to be
determined for each individual case. Of course it is likely
that the stresses will vary greatly throughout the rock mass
which will make it difficult to select a representative value of
s03max. As far as the authors are aware, there are no
theoretically correct methods for choosing this range and a
trial and error method, based upon practical compromise, is
2.8
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Fig. 7. Bearing capacity fac
suggested by Hoek [16]. From experience and trial and
error, Hoek and Brown [17] suggest a value of s03max ¼

0:25sci will provide consistent results. More specific
guidance is provided by Hoek [16] for selecting appropriate
values of s03max specifically for tunnels and slopes. However,
no guidance is provided for the case of a surface footing.

3. Problem definition

The plane strain bearing capacity problem to be
considered is illustrated in Fig. 3. A strip footing of width
B rests upon a jointed rock mass with an intact uniaxial
compressive strength sci, geological strength index GSI,
20 25 30
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tor for weightless rock.
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rock mass unit weight g, and intact rock yield parameter
mi. The ultimate capacity can be written as

qu ¼ sciNs, (17)

where Ns is defined as the bearing capacity factor. For a
weightless rock mass ðg ¼ 0Þ, the above expression is valid
but the bearing capacity factor Ns is replaced with Ns0.
The form of Eq. (17) is a convenient way of expressing the
ultimate bearing capacity as a ‘‘fraction’’ of the uniaxial
compressive strength and is historically consistent with
previous bearing capacity representations.
mi = 1

mi = 1

mi = 5

mi = 10

mi = 10

mi = 30

GSI = 20

Fig. 8. Upper bound velocity fields an
In the following, the ultimate bearing capacity will be
estimated for a practical range of GSI, g and mi values.

4. Previous studies

A review of the literature reveals that very few thorough
numerical analyses have been performed to determine the
ultimate bearing capacity of shallow foundations on rock.
Of the numerical studies that have been presented, few can
be considered as rigorous. The ultimate tip bearing
capacity of pile foundations, on the other hand, has
GSI = 50

d plastic zones for weightless rock.
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received much more attention and is discussed by Serrano
and Olalla [11,18].

Carter and Kulhawy [19] and Kulhawy and Carter [20]
proposed a simple lower bound solution for the bearing
capacity of a weightless rock mass obeying a non-linear
Hoek–Brown yield criterion. The details of the lower
bound stress field are shown in Fig. 4. A lower bound to
the failure load qu is calculated by finding a stress field that
satisfies both equilibrium and the failure criterion. The
rock mass beneath the strip footing is divided into two
zones as shown. The vertical stress s3 in zone I is assumed
to be zero (weightless), while the horizontal stress ðs1Þ is
equal to the unconfined compressive strength of the rock
mass, as given by Eq. (5). For equilibrium, continuity of
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Fig. 9. Average finite element limit analysis v
the normal stress across the discontinuity between the
zones must be maintained. The bearing capacity of the strip
footing may thus be evaluated from Eq. (1) (with
s3 ¼ sasci) as

qu ¼ ½s
a þ ðmbsa þ sÞa�sci, (18)

which to be consistent with Eq. (17) can be written as

qu ¼ Ns0sci,

where

Ns0 ¼ ½s
a þ ðmbsa þ sÞa� (19)

is the bearing capacity factor for a weightless rock mass as
defined previously.
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Eq. (18), along with the categories of rock type and rock
mass condition presented by Hoek [10], have been used to
produce guidelines for estimating the bearing capacity of
rock masses [21].

Serrano and Olalla [22,23] and Serrano et al. [24]
proposed a method for estimating the ultimate
bearing capacity for a strip footing on a weightless rock
mass with or without a surface surcharge. The method
is based upon the slip-line method developed by Soko-
lovskii [25].

The ultimate bearing capacity qu, as proposed by
Serrano et al. [24] using the Hoek–Brown criterion
presented by Hoek et al. [26], is expressed as

qu ¼ Ph ¼ bnðNb � znÞ, (20)
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Fig. 10. Average finite element limit analysis
where zn and bn are constants for the rock mass and depend
on mb, a, s and sci according to

An ¼
mbð1� aÞ

21=a

� �a=ð1�aÞ

; bn ¼ Ansci; zn ¼
s

mbAn

.

zn is referred to as the ‘‘rock mass toughness’’ while bn is
referred to as the ‘‘strength modulus’’ [27,28]. Nb is a
function of the normalised external load on the boundary
adjacent to the footing. If there is no surface surcharge on
this boundary, then Nb can be determined using the
method outlined by Serrano and Olalla [22] and is shown
graphically in Fig. 5. Note that this figure has been
produced using the most recent version of the Hoek–
Brown yield criterion, and not the earlier version [26] used
in the paper by Serrano et al. [24].
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More recently, Xiaoli et al. [29] formulated an analytical
lower bound for the bearing capacity of a strip footing
resting on a Hoek–Brown material. Very few results,
however, were presented.

5. Results and discussion

The computed upper and lower bound estimates of the
bearing capacity factor Ns for both the weightless and
ponderable rock analyses were found to be within 5% of
each other. This indicates that, for practical design
purposes, the true collapse load has been bracketed to
within �2:5% or better. As a consequence, average values
of the upper and lower bound bearing capacity factor have
been calculated and will be used in the following
discussions.

Typical upper and lower bound meshes for the problem,
along with the applied stress and velocity boundary
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Fig. 11. Average finite element limit analysis
conditions, are shown in Fig. 6. The results presented are
for the case of a perfectly rough rigid footing. For the
lower bound, this boundary condition is achieved by
assuming the individual normal stresses at element nodes
on the soil/footing interface are unrestricted in magnitude.
In the upper bound case, a uniform velocity is prescribed
for all the nodes along the footing. The overall upper
bound and lower bound mesh dimensions were selected
such that they adequately contained all plastic zones.
5.1. Weightless rock masses

For the weightless rock case the bearing capacity factor
has been defined as Ns0. The average upper and lower
bound estimates of Ns0 are summarised in Table 1 and
Fig. 7 for a range of GSI and mi values. As expected, for a
given GSI, increasing mi leads to an increase in the ultimate
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bearing capacity. Fig. 7 indicates that Ns0 increases non-
linearly with mi and GSI.

Fig. 8 presents several of the observed upper bound
velocity fields and plastic zones. For a given GSI, as mi

increases, so does the extent of the observed velocity field
and zone of plastic yielding. This is expected as an increase
in mi will, in essence, increase the strength of the rock and
the equivalent Mohr–Coulomb parameters. Interestingly
the same effect is not observed when, for a given mi, an
increase in GSI leads to a reduction in the extent of both
the velocity field and zone of plastic shearing.
5.2. Rock masses with unit weight

The effect of rock weight and rock strength has been
incorporated in the analyses using the non-dimensional
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Fig. 12. Average finite element limit analysis
factor sci=gB which varies between 125 and 10 000. This
range will cover most problems of practical interest.
The average upper and lower bound estimates of the

bearing capacity factor Ns are summarised in Figs. 9–12
for a range of GSI and mi values. For a given GSI,
increasing mi leads to an almost linear increase in the
bearing capacity factor Ns.
Referring to the above figures, the effects of including

self-weight in the analyses may be explained as follows. For
any given rock mass ðsci;GSI ;miÞ and foundation width B

(i.e. sci=B ¼ constant), the addition of self-weight g (i.e.
decrease in the ratio sci=gB) will lead to an increase in the
bearing capacity factor Ns and thus the ultimate bearing
capacity. That is, the bearing capacity factor for a
weightless rock Ns0 is always less than the bearing capacity
factor Ns for a rock with unit weight ðNsXNs0Þ. The effect
of a small increase or decrease in the estimated rock weight
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g is only likely to have a small effect on the bearing
capacity factor Ns.

The effect of the rock weight g was found to decrease
with increasing GSI. This is shown clearly in Figs. 9–12
where the lines represented by the ratio sci=gB begin to
converge towards the weightless case where sci=gB ¼ 1.
At GSI ¼ 100 (Fig. 12(b)), the ratio sci=gB has very little
influence on the bearing capacity and the observed velocity
fields are almost identical regardless of the sci=gB value (see
Fig. 15(b)). This implies that the rock mass strength
behaviour is very much dominated by cohesion and is
almost independent of the mean normal stress. In addition,
the effect of rock weight also decreases with intact rock
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Fig. 13. Effect of soil weight and stren
strength sci for a given GSI as illustrated in Fig. 13. For
example, referring to Fig. 13, for a ratio of sci=gB ¼ 125,
mi ¼ 10 and GSI ¼ 10, the bearing capacity for a ponder-
able rock mass is approximately 2.4 times that of a
weightless rock mass. However, for GSI ¼ 40 the ratio of
Ns=Ns0 decreases to around 1.3.
Several of the observed upper bound velocity plots and

zones of plastic yielding for ponderable rock masses are
shown in Figs. 14 and 15. In general it is observed that the
extent of the velocity field and zone of plastic yielding
increases with mi and sci=gB for GSIo60. For values of
GSI460 (Fig. 15(b)) the ratio of sci=gB and mi have less
effect on the observed failure mode and plastic zones.
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6. Comparison with previous numerical studies

As a preliminary comparison, several limit analyses were
performed for weightless rock masses using equivalent
Mohr–Coulomb parameters as determined by Eqs. (16)
and (15). Table 2 presents the results obtained for three
different quality rock masses. The equivalent Mohr–Cou-
lomb parameters were obtained over two separate ranges
of the minor principal stress s03; namely, 0os3o0:25sci

and 0os3o0:75sci. This table, along with Fig. 16,
indicates just how sensitive the interpreted values of c0
and f0 are to the value of s03max. Indeed, the cohesion can
vary by as much as 100% for each rock mass quality.
It should be stressed that using a linear failure envelope

in place of the curved Hoek–Brown envelope will affect the
predicted bearing capacity. To highlight this, finite element
upper bound analyses were performed using the Hoek–
Brown and equivalent Mohr–Coulomb material para-
meters in Table 2 and the ultimate bearing capacity results
are shown in Table 3. It can be seen that, for both ranges of
the minor principal stress s3, the ultimate bearing capacity
has been overestimated significantly (46–157%) when we
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Table 2

Determination of equivalent Mohr–Coulomb parameters for various quality rocks

Rock quality sci mi GSI 0os3o0:25sci 0os3o0:75sci

c0 f0 c0 f0

Very poor 20 8 30 0.65 22.8 1.3 15.9

Average 80 12 50 4.2 32.1 8.55 23.4

Very good 150 25 75 14.1 45.8 28.6 36.6

R.S. Merifield et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 920–937 935
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Table 3

Comparison of ultimate bearing capacity using Hoek–Brown and equivalent Mohr–Coulomb material parameters for various quality rocks-weightless

Rock quality qu (MPa) Hoek–Brown 0os3o0:25sci 0os3o0:75sci qu ( MPa) Serrano et al. [24]

qu (MPa) Mohr–Coulomb qu (MPa) Mohr–Coulomb

Very poor 6.7 12:0 ðþ46%Þ 15:3 ðþ87%Þ 6:5 ð�3%Þ
Average 98.5 156:4 ðþ59%Þ 161:0 ðþ63%Þ 94:4 ð�4%Þ
Very good 886.0 2279:4 ðþ157%Þ 1614:6 ðþ82%Þ 870:4 ð�1%Þ
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adopt equivalent Mohr–Coulomb strength parameters.
Although the inclusion of rock weight g is likely to increase
the ultimate values shown in Table 3 by up to 25%, the
overall predictions will still be poor for these rock qualities.
The only method for improving the comparison would be
to re-analyse each problem until equivalent Mohr–
Coulomb strength parameters c and f are found such the
ultimate bearing capacity matches those obtained from the
Hoek–Brown criterion. Given that a comprehensive set of
bearing capacity solutions is provided herein, there is little
point in carrying out such analyses.

The lower bound results obtained from the method
proposed Kulhawy and Carter [20] (Eqs. (18) and (19)) are
compared to the average finite element upper and lower
bounds in Table 1. Due to the very simple lower bound
stress field that is assumed, their estimates of the bearing
capacity factor Nco are rather conservative and are
typically 30–80% below the average finite element limit
analysis results.
To make a direct comparison between the finite element
limit analysis results and the results obtained by Serrano
et al. [24] for weightless rock, Eq. (20) can be re-written as

Ns0ðSerranoÞ ¼
qu

sci

¼
bbðNb � znÞ

sci

, (21)

where Ns0ðSerranoÞ can be compared directly to the value of
Ns ¼ Ns0 in Eq. (17).
The bearing capacity factor obtained from Eq. (21) is

compared to the average limit analysis results in Table 1.
The method proposed by Serrano et al. [24] provides
estimates of the bearing capacity factor Ns0 that are
remarkably close to the finite element results and in most
cases within a few percent. This is also confirmed by the
comparison in Table 3 for several broad rock types. The
only exception to this observation occurs for a small class
of very poor quality rocks with GSIp10, where the
method of Serrano et al. is more conservative and
underestimates the bearing capacity factor by up to 35%.
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7. Conclusions

The bearing capacity of a surface strip footing resting on
a rock mass whose strength can be described by the
generalised Hoek–Brown failure criterion has been inves-
tigated. Using powerful new formulations of the upper and
lower bound limit theorems, rigorous bounds on the
bearing capacity for a wide range of material properties
have been obtained. The results have been presented in
terms of a bearing capacity factor Ns in graphical form to
facilitate their use in solving practical design problems.

The following conclusions can be made based on the
limit analysis results:
(a)
 The computed upper and lower bound estimates of the
bearing capacity factor Ns, for either weightless or
ponderable rock foundations, were found to be within
5% of each other. This indicates that, for practical
design purposes, the true collapse load has been
bracketed to within �2:5% or better.
(b)
 The effect of ignoring rock weight can lead to a very
conservative estimate of the ultimate bearing capacity.
This is particularly the case for poorer quality rock
types with GSI values less than approximately 30,
where the ultimate bearing capacity can be as much as
60% below the actual capacity when rock weight is
included.
(c)
 Estimating the ultimate bearing capacity of a rock mass
using equivalent Mohr–Coulomb parameters was
found to significantly overestimate the bearing capa-
city. This overestimate was found to be as high as
157% for very good quality rock masses.
(d)
 Existing numerical solutions for weightless rock masses
are generally conservative and can differ from the
bound solutions by up to 80%.
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